
0-7695-1524-X/02 $17.00 (c) 2002 IEEE

14.9 TFLOPS Three-dimensional Fluid Simulation for
Fusion Science with HPF on the Earth Simulator

Hitoshi Sakagami1, Hitoshi Murai2, Yoshiki Seo3 and Mitsuo Yokokawa4

1 Computer Engineering, Himeji Institute of Technology
2167 Shosha, Himeji, 671-2201 Hyogo, Japan

sakagami@comp.eng.himeji-tech.ac.jp
2 Earth Simulator Center, Japan Marine Science and Technology Center

3173-25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001 Kanagawa, Japan
murai@es.jamstec.go.jp

3 Internet Systems Research Laboratories, NEC Corporation
4-1-1 Miyazaki, Miyamae, Kawasaki, 216-8555 Kanagawa, Japan

y-seo@ce.jp.nec.com
4 Japan Atomic Energy Research Institute

6-9-3 Higashi-Ueno, Taito-ku, 110-0015 Tokyo, Japan
yokokawa@gaia.jaeri.go.jp

Abstract. We succeeded in getting 14.9 TFLOPS performance when running a
plasma simulation code IMPACT-3D parallelized with High Performance
Fortran on 512 nodes of the Earth Simulator. The theoretical peak performance
of the 512 nodes is 32 TFLOPS, which means 45% of the peak performance
was obtained with HPF. IMPACT-3D is an implosion analysis code using TVD
scheme, which performs three-dimensional compressible and inviscid Eulerian
fluid computation with the explicit 5-point stencil scheme for spatial
differentiation and the fractional time step for time integration. The mesh size is
2048x2048x4096, and the third dimension was distributed for the
parallelization. The HPF system used in the evaluation is HPF/ES, developed
for the Earth Simulator by enhancing NEC HPF/SX V2 mainly in
communication scalability. Shift communications were manually tuned to get
best performance by using HPF/JA extensions, which was designed to give the
users more control over sophisticated parallelization and communication
optimizations.

1 Introduction

The Rayleigh-Taylor instability, which is one of fluid dynamics phenomena, can
occur whenever a heavy dense fluid is accelerated by a light sparse fluid. Small
perturbations on an interface between two fluids will grow in time and eventually
form nonlinear bubble-spike structures, which can lead to the Kelvin-Helmholtz like
instability.

In inertial confinement fusion with ablatively accelerated targets, the Rayleigh-
Taylor instability can be induced both in acceleration and stagnation phases, and can
destroy spherical symmetry of the imploding target. In the stagnation phase, the

perturbation at the pusher-fuel contact surface is unstable to the Rayleigh-Taylor
instability. One-dimensional simulations show that nuclear reaction takes place
predominantly near the maximum compression and neutron yield increases by more
than two orders of magnitude in the stagnation phase. It is, therefore, very important
in this research field to investigate this instability since the pusher-fuel mixing, which
is associated with the Rayleigh-Taylor instability, reduces the total nuclear reaction
yield to significantly lower than the value predicted by one-dimensional simulations.

We have been investigating linear and nonlinear features of the fully three-
dimensional Rayleigh-Taylor instability in spherically stagnating targets through
numerical simulations [1-3]. The Rayleigh-Taylor instability in spherical geometry is
quite different from that in planar geometry because acceleration and wavelength vary
in space and time. Nonlinear evolution in three-dimensional simulations also
significantly differs from that obtained by two-dimensional simulations. A single
processor can only compute lower mode phenomena due to the limitation of computer
ability. Even if lower modes are dominant to determine overall implosion dynamics,
higher modes are generated by mode coupling and rapidly grow than lower modes.
Thus it is also important to track them by simulations with parallel computers to
precisely analyze experimental results.

In general, researchers in the computer science field are interested in a computer
itself, but those in the computational science field want to investigate science itself
using computers as convenient tools. Thus parallel programming is a usual work and
even a research subject for computer scientists, but it is never an object for
computational scientists. Computational scientists think that many bothersome works
associated with the computer science, such as the parallel programming, should be
reduced automatically as much as possible, and are hoping to concentrate their
attention on their essential research. Thus most of computational scientists consider
parallel computers as tools on which many jobs for a parameter survey can be run
simultaneously at many computer centers in Japan. This fact is one of reasons that
have inhibited the spread of parallel computers, and computational scientists have not
received actual benefits and potential ability of parallel computers for high
performance computing yet. Not only computer scientists, but also computational
scientists want to use distributed memory parallel machines if applicable. In order to
adapt the distributed memory parallel computer from a special kind of machine for
computer scientists to a general convenient tool for computational scientists, the high-
level language that can easily describe parallelization in programs is essential.

We used High Performance Fortran as the high-level language and inserted its
directives into the plasma simulation code that is designed to simulate three-
dimensional Rayleigh-Taylor instability in spherical systems. 12.5TFLOPS sustained
performance was achieved with automatic optimizations for shift communications by
HPF/ES compiler on the Earth Simulator with 2048x2048x4096 meshes. With the
further optimization using the HPF/JA extensions, which is a set of HPF extensions
designed to give the users more control over sophisticated parallelization and
communication optimizations, we accomplished 14.9TFLOPS sustained performance,
45% of the peak performance of the 512 node Earth Simulator.

2 Three-Dimensional Fluid Code

IMPACT-3D (IMPlosion Analysis Code with TVD scheme) is fully Eulerian and this
is necessitated from the requirement to model rotational flows accurately. The
Rayleigh-Taylor instability leads to formation of nonlinear bubble-spike structures,
which generate vorticity in the unstable region of flows and distort the contact surface
tremendously. Thus, flows induced by the Rayleigh-Taylor instability are typically
rotational and standard Lagrangian algorithms are not accurate enough for such flows
without rezoning (reconstruction of the mesh), which introduces an unacceptable
amount of numerical diffusion. A Cartesian coordinate system is employed in
IMPACT-3D to model convergent asymmetric flows precisely. Other coordinate
systems contain a singularity at the origin that would cause inaccuracies. The TVD
scheme can capture discontinuities such as shock wave fronts and contact surfaces
within a few meshes even after many time steps, and it has a second order accuracy
both in space and time without introducing non-physical oscillations at the
discontinuity. The origin of the target is located at the center of the mesh system with
a uniform grid spacing, and the physical values on all boundaries are obtained by
extrapolating the inside values according to the open free boundary condition. The
non-physical perturbations induced at boundaries do not affect the Rayleigh-Taylor
instability at the contact surface because there is a sufficiently thick ablator layer
between them and the non-physical perturbations are smoothed out.

Perturbations at the interface exponentially grow in the linear stage. After
saturation of the linear growth, the instability shifts to the nonlinear free-falling phase
and forms bubble-spike structures [2]. Time evolution of isovalue-surfaces of the
density, corresponding to the unstable interface, is shown in Fig. 1 when an initial
perturbation is given by a spherical harmonics function with mode number (n, m) =
(6, 3) and 101x101x101 meshes. The interface typically shows the nonlinear bubble-
spike structures in the three-dimensional spherical system. During the free-fall phase,
bubbles are gradually isolated from each other and surrounded by spikes, while spikes
are combined with each other. The bubbles float into the heavy fluid (pusher) and
vortex rings are developed to feed bubbles by blowing off the light fluid (fuel) into
them, especially around the base of the bubbles. As the pusher spikes penetrate into
the center of the target, the vortex rings are tightened and enhance this feeding
mechanism. The growing speed in the nonlinear stage of the Rayleigh-Taylor
instability is characterized by those vortex rings that are induced in the nonlinear
bubble-spike structure [3]. The pusher-fuel contact surface and the vorticity in this
final stage are shown in Fig. 2.

Recently advanced laser systems for the inertia confinement fusion can be highly
aligned and they can irradiate fusion targets more uniformly than ever. Thus to
inspect experimental results requires more precise simulations which calculate not
only lower mode but also higher mode phenomena. In addition, Fast Ignition that is
an entirely different scheme to achieve fusion burning was proposed and preliminary
experiments have just begun [4]. Ultra large-scale simulations are required to analyze
those experimental results and phenomena with enough precision, and they will be
accomplished only with parallel supercomputers.

Fig. 1. The nonlinear time evolution of the Rayleigh-Taylor instability in the stagnating system.
The perturbation is induced as a spherical harmonics function (n,m)=(6,3).

Fig. 2. The pusher-fuel contact surface and the vorticity. The perturbation is induced as a
spherical harmonics function (n,m)=(6,3). Red, yellow and green vectors indicate strong,
medium and weak vorticities, respectively.

3 Environment

3.1 High Performance Fortran

In order to develop parallel programs on high-speed parallel supercomputers, MPI
(Message Passing Interface)[5] is generally used. However, since communications
among processors must be described explicitly in MPI, it is not easy for ordinary
users. On shared memory parallel computers, OpenMP reduces the difficulty of
parallel programming, but it cannot be used on distributed memory parallel
computers. High Performance Fortran (HPF) is a parallel programming language
developed in 1993 by the High Performance Fortran Forum to provide a high-level
and easy-to-use portable programming interface for distributed memory parallel
systems. It can be classified as a data parallel language. The users can parallelize their
programs with a single-threaded execution model mainly by specifying mapping of
array data on distributed memories. Since a program is described with a pure data-
parallel paradigm in HPF, it has high affinity with the programming style using
traditional Fortran. Relatively low performance of parallel execution had barred the
spread of HPF until now. But the recent progress of HPF compilers has changed the
situation. HPF is now ready to be used for real-world applications and ready to be a
very important tool for computational scientists to take an advantage of distributed
memory parallel computers.

From an advanced user’s point of view, HPF2.0 language specification [6] lacks
functionality for optimizing data transfers. JAHPF (Japan Association for HPF) [7],
an informal coalition of HPC users and computer vendors in Japan setup in 1997 to
promote the HPF language, has defined HPF/JA 1.0 [8] as a set of HPF extensions to
give the users more control over sophisticated parallelization and communication
optimizations. The extensions include parallelization of loops with complicated
reductions, asynchronous communication, user-controllable shadow, and
communication pattern reuse for irregular remote data accesses.

In parallelizing IMPACT-3D, we used REFLECT and LOCAL directives to tune
communications. In the HPF2.0 specification, the consistency of the shadow data with
the original data is controlled by a compilation system. There are few ways for the
user to explicitly control it. This frequently results in redundant communications. In
HPF/JA the shadow specification is extended so that the user can control
communication on it. The REFLECT directive is regarded as an execution statement
that keeps the coherency of the shadow data. The LOCAL directive guarantees the
accesses to arrays in a list do not require inter-processor communications. The user
can eliminate redundant communications for the shadow area by the combined use of
the REFLECT and LOCAL directives.

Recently Japanese computer venders have released HPF compilers equipped with
the HPF/JA extensions for their vector-parallel supercomputers. These HPF compilers
are very reliable and facilitate getting good performance for real-world scientific
applications [9-12]. JAHPF is now expanded into a new organization, HPF Promoting
Consortium (HPFPC) [13], where various HPF promotion activities are supported.

3.2 The Earth Simulator [14]

The Earth Simulator is a high-speed parallel vector computer developed for research
on natural and environmental changes. Target sustained performance of the Earth
Simulator is set to 1,000 times higher than that of the most frequently used
supercomputers around 1996 in climate research field. Execution performance of
35.86TFLOPS was approved by the result of the Linpack benchmark and the Earth
Simulator was registered as the world's fastest supercomputer at June 20th, 2002. It is
expected that the Earth Simulator will bring about great progress in the earth science
research.

The Earth Simulator is a distributed memory parallel system that consists of 640
processor nodes (PNs) connected by a 640 x 640 internode crossbar switch. Each
node is a shared memory system composed of eight arithmetic processors (APs), a
shared memory system of 16GB, a remote control unit (RCU), and an I/O processor
(IOP). Each AP contains a vector unit (VU), a scalar unit (SU), and a main memory
access control unit, which are mounted on a one-chip LSI operating at clock
frequency of 500MHz, partially 1GHz. The VU consists of 8 sets of processing units,
each of which has six kinds of vector pipelines (add/shift, multiply, divide, logical,
mask, and load/store) and 72 vector registers of 256 elements. Eight pipelines of the
same kind work together by a single vector instruction, and those of different types
can operate concurrently. The SU is a 4-way super-scalar processor with a 64KB
instruction cache, a 64KB data cache, and 128 general-purpose scalar registers. The
SU employs branch prediction, data prefetching and out-of-order instruction
execution. The memory system (MS) in each PN is symmetrically shared by 8 APs. It
is configured by 32 main memory package units (MMU) with 2048 banks. Each AP
has a 32GB/s memory bandwidth, and one node has 256GB/s in total. The RCU in
each PN is directly connected to the crossbar switch by two ways of sending and
receiving, and controls internode data communications. The interconnection network
(IN) consists of two parts: one is an internode crossbar control unit (XCT) that
coordinates switching operations; the other is an internode crossbar switch (XSW)
that functions as an actual data path. XSW is composed of 128 separate switches,
each of which has 1Gbits/s bandwidth operating independently. Any pairs of the
switches and nodes are connected by electric cables. The theoretical data transfer rate
between every two PNs is 12.3GB/s x 2 ways. The peak performance of each AP is
8GFLOPS. The total number of processors is 5,120 and the total peak performance
and the main memory capacity are 40TFLOPS and 10TB, respectively. Advanced
CMOS technology and air-cooling system is used. The hardware specification is
summarized in Table 1.

An operating system running on a processor node is a UNIX-based system to
support large-scale scientific computations. Compilers of Fortran90, HPF, C and C++
are available with automated support for vectorization and parallelization. A message
passing library based on MPI-1 and MPI-2 is also available. HPF/ES is an HPF
compiler developed for the Earth Simulator by enhancing NEC HPF/SX V2 [15] in
many respects. It provides some unique extensions as well as the features of HPF 2.0,
its approved extensions, and HPF/JA to support efficient and portable parallel
programming. The unique extensions include vectorization directives, features
optimization of irregular communications, parallel I/O, and so on. HPF/ES detects

SHIFT-type communications automatically and generates calls to the highly
optimized runtime routines of the SHIFT-type communication. Furthermore, the
communication schedule generation is reused when the same communication patterns
are iterated across loop executions.

The Earth Simulator system has a three-level hierarchy of parallelism; vector
processing in an AP, SMP parallel processing among APs in a PN, and parallel
processing among PNs. In this evaluation, however, we do not exploit the hierarchical
parallelism explicitly, but map HPF abstract processors onto APs in a flat fashion.

Table 1. The Hardware specification of the Earth Simulator.

Total number of processor nodes: 640
Number of AP for each node: 8
Total number of AP: 5120
Peak performance of each AP: 8 GFLOPS
Peak performance of each PN: 64 GFLOPS
Peak performance of total system: 40 TFLOPS
Shared memory of each PN: 16 GB
Total main memory: 10 TB

4 Accomplished Performance

4.1 Automatic Communications

IMPACT-3D performs three-dimensional compressible and inviscid Eulerian fluid
computation with the explicit 5-point stencil scheme for spatial differentiation and the
fractional time step for time integration. Therefore, it is easy to parallelize this code
with an ordinary domain decomposition method [16]. The first dimension of the
three-dimensional computation space is used for vectorization and the third dimension
for HPF parallelization. As the section size of vector registers is 256 and the vector
length for half performance is around 50, we can secure enough vector length to bring
out vector performance.

We distributed all three-dimensional array variables with (*,*,BLOCK) and
shadow regions are allocated for the distributed dimension. All parallelizable loops
except one in the code were automatically parallelized without inserting
INDEPENDENT directives. The only one exception was a loop that includes
reduction operations. For this loop, an INDEPENDENT directive followed by a
REDUCTION clause was inserted. A typical HPF code fragment of IMPACT-3D is
shown in Fig. 3. Communications required for IMPACT-3D is SHIFT-type
communications and reductions. HPF/ES succeeded in generating optimized
communications for them and eliminating all the redundant data transfers [10]. It
performed message coalescing optimization for all the possible opportunities. In other
words, more than one SHIFT- type communications of the same pattern for a loop
nest are packed into one message to make the message length larger.

Fig. 3. A typical HPF code fragment of IMPACT-3D. All array variables are distributed with
(*,*,BLOCK) and shadow regions are defined for efficient SHIFT-type communications. An
INDEPENDENT directive followed by a REDUCTION clause was inserted for a loop of
reduction operations.

Communications generated by HPF/ES are composed of two phases,
communication schedule construction and message transfer. The schedule is a set of
information required for transferring messages in the second phase, such as buffers to
be transferred, communication pattern, pairs of the sender and receiver. The structure
of the schedule is designed to be independent of a target array. The schedule
constructed in a communication can, therefore, be shared with others if the arrays to
be transferred have the same shape and distribution, and are accessed in the same
index pattern. HPF/ES performs the optimization of communication pattern reuse. It
generates just one communication schedule for the off-processor array accesses of the
same pattern inside of a subroutine boundary. Many techniques to optimize SHIFT-
type communications was developed [17,18], but our optimization method is superior
to them in the point that schedule construction and message transfer can be optimized
separately.

In the example shown in Fig. 3, SHIFT-type communications for sm and sr are
generated just once before the first loop nest, and no communication is generated for

 parameter(lx=1024, ly=1024, lz=2048)
!HPF$ PROCESSORS es(NUMBER_OF_PROCESSORS())
 dimension sr(lx,ly,lz), sm(lx,ly,lz)
!HPF$ DISTRIBUTE (*,*,BLOCK) onto es :: sr, sm
!HPF$ SHADOW (0,0,0:1) :: sr, sm
 do iz = 1, lz-1
 do iy = 1, ly
 do ix = 1, lx
 …
 wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
 …
 end do
 end do
 end do
 …
 do iz = 1, lz-1
 do iy = 1, ly
 do ix = 1, lx
 …
 wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
 …
 end do
 end do
 end do
c-----
!HPF$ INDEPENDENT, REDUCTION(MAX:sram)
 do iz = 1, lz
 do iy = 1, ly
 do ix = 1, lx
 …
 sram = max(sram, …)
 end do
 end do

 end do

the second nest. The communication schedule for sm is reused for sr. Furthermore,
the communications for sm and sr are coalesced.

For measuring effective performance, we used an instrumentation facility provided
by MPI/ES, which underlies the runtime system of HPF/ES. MPI/ES collects runtime
performance information using hardware counters. This facility displays performance
information in detail as shown in Fig. 4. Performance figures of maximum, minimum
and average are displayed. A sustained performance figure is calculated by dividing
the total floating operation count by elapsed time. The total floating operation count
are computed by multiplying average floating operation count (FLOP count) and the
number of processors. The elapsed time is measured separately by mpi_wtime().

The measurement environment is summarized in Table 2. A special compiler
option, -Moverlap=size:0, was used to suppress the compiler’s automatic allocation
of SHADOW region .

Fig. 4. Runtime performance information is provided by MPI/ES. The total number of floating
operations can be calculated by multiplying average FLOP count and the number of processors,
and total sustained performance can be calculated by this divided by elapsed time separately
measured using mpi_wtime().

Table 2. The summary of measurement environment.

OS: ESOS Release 1.1
HPF compiler: HPF/ES Rev.1.7(585)
compiler options: -O3 -Moverlap=size:0

We made the performance evaluation using three kinds of mesh size, namely
1280x1280x1280, 1024x1024x2048 and 2048x2048x4096. As the third dimension is
distributed, it determines the maximum number of processors effectively utilized.
Total sustained performance and its efficiency to the peak performance as a function
of number of nodes are shown in Fig. 5. We achieved 12.5 TFLOPS, 39% of the peak
performance with the largest mesh size on 512 nodes (4096 processors). We are very
encouraged to get this outstanding performance on a real-world scientific application
parallelized with HPF. For this achievement, 45 lines of HPF directives are inserted to
1334 lines (without comment lines) of the original Fortran program.

Global Data of 4096 processes: Min [U,R] Max [U,R] Average
=============================

Real Time (sec) : 387.892 [0,2734] 390.076 [0,2375] 390.029
User Time (sec) : 378.252 [0,3519] 386.147 [0,13] 379.812
System Time (sec) : 0.067 [0,13] 0.926 [0,2127] 0.185
Vector Time (sec) : 318.009 [0,4095] 335.689 [0,8] 330.992
Instruction Count : 47383497003 [0,4095] 51329038206 [0,11] 50823805078
Vector Instruction Count : 9969541284 [0,4095] 13102470101 [0,8] 13063204823
Vector Element Count :2548332077307 [0,4095] 3345775534394 [0,4] 3337405620723
FLOP Count : 840544981245 [0,4095] 1162667553602 [0,1024] 1162483025543
MOPS : 6810.288 [0,4095] 8930.044 [0,4093] 8886.425
MFLOPS : 2213.811 [0,4095] 3073.787 [0,3519] 3060.688
Average Vector Length : 254.422 [0,15] 255.699 [0,254] 255.481
Vector Operation Ratio (%) : 98.553 [0,4095] 98.883 [0,2413] 98.881
Memory size used (MB) : 1870.260 [0,8] 1892.447 [0,0] 1886.204
MIPS : 124.798 [0,4095] 134.389 [0,4093] 133.813
Instruction Cache miss (sec): 0.074 [0,4095] 0.231 [0,4031] 0.102
Operand Cache miss (sec): 1.368 [0,4095] 1.589 [0,3511] 1.458
Bank Conflict Time (sec): 0.363 [0,4095] 0.566 [0,3608] 0.538

0

5

10

15

20

0

0.5

1

0 100 200 300 400 500 600

 1280x1280x1280

 1024x1024x2048

 2048x2048x4096

P
er

fo
rm

an
ce

 (T
F

L
O

P
S)

E
fficiency

Number of Nodes

Fig. 5. Total sustained performance (solid) and its efficiency to the peak performance (hollow)
as a function of number of nodes. Triangle, diamond and circle markers correspond to mesh
size of 1280x1280x1280, 1024x1024x2048 and 2048x2048x4096, respectively. As each node
consists of eight processors, total number of processors can be obtained by multiplying number
of nodes by eight. For example, 512 nodes have 4096 processors.

4.2 Manual Communication Optimization with HPF/JA

We made a further performance tuning by using the REFLECT and LOCAL
directives defined in the HPF/JA language specification. The directives are designed
so that a user can explicitly control updates to a shadow region by REFLECT, and tell
the compiler no necessity of communications for a specific array access by LOCAL.

As HPF/ES could perform extensive communication optimizations, there were no
differences in the inserted communications themselves whether or not the directives
are inserted. However, we were able to reduce the number of communication
schedule generations by using the directives. When the compiler makes the automatic
optimization (automatic), it has to generate the schedule computation at least once for
a subroutine invocation, because the communication pattern is computed using the
runtime information of array access pattern. On the other hand, when the directives
are explicitly specified (manual), the communication pattern can be determined
statically, because the array elements to be transferred can be computed just by the
shape, mapping, and shadow of the array, which are specified in declarative
statements. Thus, the manual optimization can reduce the frequency of the schedule
construction to only once for each array throughout the whole program execution.
Once a schedule is generated, it is passed across subroutines so that it can be reused.

A typical HPF code fragment using the REFLECT and LOCAL directives is shown in
Fig. 6. In total, 12 lines of the directives were inserted for the optimization.

Fig. 7 shows total sustained performance and its efficiency for two kinds of mesh
size, 1024x1024x2048 and 2048x2048x4096. By inserting the HPF/JA directives,
14.9 TFLOPS, 45% of the performance was achieved on the 512 nodes (4096
processors).

Fig. 6. A typical HPF code fragment using the REFLECT and LOCAL directives. By explicitly
specifying the directives, the number of communication schedule generations can be reduced.

4.3 Performance Comparison with an MPI Version

We made the performance comparison between the HPF coding and the MPI coding.
To parallelize the three-dimensional fluid code with MPI, we made the modifications
on the following points:

• loop bounds for all the parallelized DO loops modified to local bounds
• all mapped arrays to be distributed
• all array references to the distributed data are modified
• SHIFT-type communications inserted for all variables to exchange boundary

data between neighboring processors
• allreduce communication inserted for reduction operations.

Table 3 summarizes the results for the 1024x1024x2048 mesh execution. HPF
performances without inserting HPF/JA directives, HPF performances with the
directives, and MPI performances are shown in the columns of HPF(auto),

!HPF$ REFLECT sm, sr
 do iz = 1, lz-1
!HPF$ ON HOME(sm(:,:,iz)), LOCAL BEGIN
 do iy = 1, ly
 do ix = 1, lx
 …
 wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
 …
 end do
 end do
!HPF$ END ON
 end do
 …
 do iz = 1, lz-1
!HPF$ ON HOME(sm(:,:,iz)), LOCAL BEGIN
 do iy = 1, ly
 do ix = 1, lx
 …
 wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
 …
 end do
 end do
!HPF$ END ON

 end do

HPF(manual), and MPI, respectively. Performance ratios of the HPF executions
compared to MPI are also shown. In the 256 node execution, the MPI program
achieved 46% of the peak performance, and the HPF(auto) obtained more than 80%
of this MPI performance. Furthermore, HPF(manual) achieved 95% of the MPI
performance. Even with the optimization with HPF/JA extensions, HPF/ES generates
communication schedule construction at least once for each distributed array, but
users can directly specify the communication pattern in the MPI calls without creating
the schedules. This explains the performance degradation of HPF. However, we are
fully satisfied with the HPF performance considering the MPI programming requires
much more work than HPF coding.

0

5

10

15

20

0

0.5

1

0 100 200 300 400 500 600

 1024x1024x2048

 2048x2048x4096

P
er

fo
rm

an
ce

 (T
F

L
O

P
S)

E
fficiency

Number of Nodes

Fig. 7. Total sustained performance (solid) and its efficiency to the peak performance (hollow)
as a function of number of nodes. Diamond and circle markers correspond to mesh size of
1024x1024x2048 and 2048x2048x4096, respectively. We can finally get 14.9 TFLOPS of the
total sustained performance, which is corresponding to 45% of the peak performance.

Table 3. Total sustained performances for HPF and MPI, and performance ratios between HPF
and MPI with 1024x1024x2048 meshes. HPF(auto) indicates that communications are
optimized by the compiler as described in Section 4.1, but communications are manually tuned
with HPF/JA extensions in HPF(manual) as described in Section 4.2.

TFLOPS Performance Ratio to MPI
node# HPF(auto) HPF(manual) MPI HPF(auto) HPF(manual)

32 0.987 0.996 1.021 0.97 0.98
64 1.937 1.977 2.026 0.96 0.98

128 3.674 3.876 3.990 0.92 0.97
256 6.143 7.302 7.659 0.80 0.95

5 Summary

We have parallelized a plasma simulation code IMPACT-3D with HPF on the Earth
Simulator. We have only distributed all three-dimensional array variables with
(*,*,BLOCK). The HPF compiler automatically parallelized all of the do loops except
one reduction loop and optimized SHIFT-type communications, and we could get
12.5 TFLOPS sustained performance when running the code with the mesh size of
2048x2048x4096 on 512 nodes of the Earth Simulator. We manually tuned the
SHIFT-type communications by using REFLECT and LOCAL directives of HPF/JA,
and 14.9 TFLOPS sustained performance, 45% of the peak performance, was finally
accomplished. We would like to emphasize that this excellent achievement has been
done with HPF programming.

The Earth Simulator is just available this March and we have not enough time to
run the code. Although the fluid code, IMPACT-3D, is a real scientific application,
never a benchmark program, the physical simulation result itself is very preliminary
and we can not get any new knowledge from analyzing simulation results. But we will
perform ultra large-scale simulations in the near future and boldly go into the frontiers
no man has gone before. We would like to use the HPF system to parallelize many
other simulation programs to accelerate the earth science.

References

1. Sakagami, H. and Nishihara, K.: Rayleigh-Taylor Instability on Pusher-Fuel Contact Surface
of Stagnating Targets, Phys. Fluids B, Vol. 2, pp. 2715-2730 (1990).

2. Sakagami, H. and Nishihara, K.: Three Dimensional Rayleigh-Taylor Instability of Spherical
Systems, Phys. Rev. Lett., Vol. 65, pp. 432-435 (1990).

3. Sakagami, H. and Nishihara, K.: Three Dimensional Rayleigh-Taylor Instability of Laser
Fusion Target, Proc. of Int. Conf. on Plasma Physics, Foz do Iguasu, Brazil, October 31 -
November 4, Vol. 1, pp. 249-252 (1994).

4. Kodama, R., et. al.: Fast heating of ultrahigh-density plasma as a step towards laser fusion
ignition, Nature Vol. 412, pp. 798-802 (2001).

5. Message Passing Interface Forum: A Message-Passing Interface Standard, Int. Journal of
Supercomputing Applications and High Performance Computing, Vol.8, pp. 165-416
(1994).

6. High Performance Fortran Forum: High Performance Fortran Language Specification
Version 2.0 (1996).

7. http://www.hpfpc.org/jahpf/.
8. Seo, Y., Iwashita, H., Ohta, H. and Sakagami, H.: HPF/JA: extensions of High Performance

Fortran for accelerating real-world applications, Concurrency and Computation: Practice
and Experience, Vol. 14, pp. 555-573 (2002).

9. Ogino, T.: Three-dimensional global MHD simulation code for the Earth's magnetosphere
using HPF/JA, Concurrency and Computation: Practice and Experience, Vol. 14, pp. 631-
646 (2002).

10. Sakagami, H. and Mizuno, T.: Compatibility Comparison and Performance Evaluation for
Japanese HPF Compilers using Scientific Applications, Concurrency and Computation:
Practice and Experience, Vol. 14, pp. 679-689 (2002).

11. Nishitani, Y., Negishi, K., Ohta, H. and Nunohiro, E.: Techniques for compiling and
implementing all NAS parallel benchmarks in HPF, Concurrency and Computation: Practice
and Experience, Vol. 14, pp. 769-787 (2002).

12. Sakagami, H., Mizuno, T. and Furubayashi, S.: Parallelization Methods for Three-
Dimensional Fluid Code using High Performance Fortran, Proc. of Int. Conf. on Parallel
CFD 2002, Nara, Japan, May 20-22, (2002).

13. http://www.hpfpc.org/.
14. Tani, K.: Status of the Earth Simulator System, Proc. of the 16th Int. Supercomputer Conf.,

Heidelberg, Germany, Jun 19-22 (2001).
15. Murai, H., Araki, T., Hayashi, Y., Suehiro, K. and Seo, Y.: Implementation and evaluation

of HPF/SX V2, Concurrency and Computation: Practice and Experience, Vol. 14, pp. 603-
629 (2002).

16. Sakagami, H. and Ogawa, Y.: Performance Evaluation for 3D Fluid Code and 2D Particle
Code Using HPF, Proc. of 3rd HPF User Group meeting, Redondo Beach, USA, August 1-2
(1999).

17. Chakrabarti, S., Gupta, M., and Choi, J.-D.: Global communication analysis and
optimization, Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation, Philadelphia, PA, USA, May 21-24 (1996).

18. Roth, G., Mellor-Crummey, J., Kennedy, K. and Brickner, R. G.: Compiling Stencils in
High Performance Fortran, Proc. of SC'97: High Performance Networking and Computing,
San Jose, CA, USA, November 15-21 (1997).

