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Implementation and Evaluation of HPF/SX V2

Hitoshi Murai ,† Takuya Araki ,†† Yasuharu Hayashi ,† Kenji Suehiro †

and Yoshiki Seo†

We are developing HPF/SX V2, an HPF compiler for vector parallel machines. It provides some unique
extensions as well as the features of HPF 2.0 and HPF/JA. This paper describes in particular four of them: 1)
the ON directive of HPF 2.0, 2) the REFLECT and LOCAL directives of HPF/JA, 3) vectorization directives, and 4)
automatic parallelization. We evaluated these features through some benchmark programs on NEC SX-5. The
results showed that each of them achieved a 5-8 times speedup in 8-CPU parallel execution and the four features
are useful for vector parallel execution. We also evaluated the overall performance of HPF/SX V2 by using
over 30 well-known benchmark programs from the HPFBench, APR Benchmarks, GENESIS Benchmarks, and
NAS Parallel Benchmarks. About half of the programs showed good performance, while the other half suggest
weakness of the compiler, especially on its runtimes. It is necessary to improve them to put the compiler to
practical use.

1. Introduction

Distributed-memory multicomputers are su-
perior to shared-memory multicomputers in
cost and scalability, and therefore widely used
in the areas of scientific and engineering com-
puting. Message Passing Interface (MPI)1),2)
is now frequently adopted as the means to
program distributed-memory multicomputers.
However, it forces users to manage all of the
parallelization steps, such as data layout, com-
munication generation and computation parti-
tioning, which impose a heavy burden on users.
High Performance Fortran (HPF)3) is designed
to support efficient and portable parallel pro-
gramming for scalable systems. Compared to
MPI, HPF imposes a lighter burden on users.
All that users need to do is to specify the data
layout with some simple directives, and the re-
maining two tasks, communication generation
and computation partitioning, are handled au-
tomatically by the compiler.

While such ease of writing parallel programs
is a strong point of HPF, there is a prob-
lem in that the capability of compilers has a
much greater impact on the performance of tar-
get programs than how one writes programs,
because many of parallelization steps are en-
trusted entirely to the compilers. Although
much research is done in an effort to improve
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the capability of compilers for HPF or HPF-
like languages,4),6)∼8),10) no mature compilers
have been released and it can be said that writ-
ing HPF programs equal to MPI in the per-
formance is difficult at present. The HPF2.0
approved extensions and the HPF/JA language
specification5) were proposed to solve the above
problem by supplementing the insufficient capa-
bility of current HPF compilers with language
extensions.

We are developing HPF/SX V2, an HPF
compiler for vector parallel machines. It pro-
vides some unique extensions as well as the fea-
tures of HPF 2.0 and HPF/JA, which mainly
aim to solve a problem performing stencil com-
putations (also called a regular problem). This
paper describes particularly four of them: 1)
the ON directive of HPF 2.0, 2) the REFLECT and
LOCAL directives of HPF/JA, 3) vectorization
directives, and 4) automatic parallelization.

When a compiler cannot determine the op-
timal computation partitioning or generate the
optimal communication, it parallelizes loops in
an inefficient manner or generates unnecessary
and expensive communications, with a resul-
tant degradation of performance. In such a
case, the ON directive of the HPF2.0 approved
extensions or the REFLECT and LOCAL directives
of the HPF/JA language specification can be
used to instruct the compiler to perform effi-
cient computation partitioning or communica-
tion generation.

The ON directive or something similar has
been implemented on some compilers for use
in research or commerce, such as ADAPTOR,6)
the D System,7) VFC,8) pghpf,9) etc. VPP For-
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tran,10) which has a language specification sim-
ilar to HPF, supports the OVERLAPFIX directive
corresponding to the REFLECT directive. How-
ever, they have not been evaluated sufficiently.
In this paper we evaluate and verify their effec-
tiveness through some benchmark programs.

It is important to increase the vectorization
ratio in order to achieve good performance on
vector machines, but HPF has no specification
for vectorizing programs. We define some vec-
torization directives for HPF and implement
them into HPF/SX V2.

ADAPTOR provides the SELECT directive,
which is used for specifying the vectorization
of a dimension of an array, but is not usable
in the case where the dimension to be vector-
ized varies from loop to loop. The vectorization
directives of HPF/SX V2, in contrast, can be
specified for each loop to attain more flexible
vectorization.

HPF/SX V2 provides such an automatic par-
allelization feature, as described in Section 3.4.
It tests data dependency in a loop and paral-
lelizes it automatically if possible. This means
that users are released from the tedious task
of inserting INDEPENDENT directives as well as
NEW clauses into their programs.

In addition to describing and evaluating each
of the new features, this paper presents the
status of the compiler in terms of the per-
formance of its generating codes, evaluating
over 30 well-known benchmark programs from
HPFBench,14) APR Benchmarks,13) GENE-
SIS Benchmarks,17) and NAS Parallel Bench-
marks.18)

The remainder of this paper is organized as
follows. Section 2 gives a brief overview of
HPF/SX V2. Section 3 describes the four fea-
tures of HPF/SX V2. The evaluation results
are shown in Section 4. Finally, Section 5 pro-
vides the conclusions.

2. Overview of HPF/SX V2

The HPF/SX V2 compilation system con-
sists of four components: a driver, a transla-
tor, a Fortran compiler, and runtime routines
(Fig. 1).

This system works internally as follows: The
driver interprets a command line and invokes
the translator and the Fortran compiler with
appropriate switches; the translator reads an
HPF source program and translates it into an
SPMD-style intermediate Fortran source pro-
gram; the Fortran compiler generates an ob-

ject program for the NEC SX series supercom-
puter15) from the intermediate program; the
object program is linked with the runtime rou-
tines to produce an executable target program.

HPF/SX V2
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Fig. 1 Components of HPF/SX V2

Each of the four components are presented
briefly in the following sections.

2.1 Driver
The driver works as a frontend of HPF/SX

V2. First, the driver interprets a command
line and translates user-specified compiler op-
tions into internal switches for the translator
and the Fortran compiler. Second, it invokes in
sequence the translator and the Fortran com-
piler with the translated switches to generate
object programs, which are linked with the run-
time routines to produce an executable target
program.

2.2 Translator
The translator accepts HPF programs and

generates SPMD-style intermediate Fortran
source programs with calls to the runtime rou-
tines inserted. The main tasks of the translator
are:

• computation partitioning,
• communication generation and its opti-

mization, and
• inserting codes for parallel execution, such

as runtime array descriptor management,
temporary array allocation, etc.

It also performs some conventional optimiza-
tions such as redundant code elimination, loop-
invariant code hoisting, induction variable re-
placement, etc.11),12) Other optimizations are
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left to the succeeding Fortran compiler.
2.3 Fortran compiler
The intermediate Fortran programs gener-

ated by the translator are passed to the back-
end Fortran compiler. It is an extension of the
FORTRAN90/SX compiler developed to enable
large-scale scientific computations through For-
tran programs. The Fortran compiler vector-
izes, parallelizes on SMPs and optimizes the in-
termediate programs and generates object pro-
grams for the NEC SX series supercomputer.

2.4 Runtime routines
The runtime routines are a collection of func-

tions written in C containing MPI library calls.
They are called from the intermediate programs
to execute such runtime tasks as:

• array descriptor management,
• inter-processor communication, and
• other miscellaneous tasks, such as ad-

dress conversion, execution control, mem-
ory management, I/O, runtime error check,
etc.

The array descriptor is a runtime data that
holds information about mapping, size, type,
etc., of each array. Each of the runtime rou-
tines works on the basis of this information.

3. Features of HPF/SX V2

The features of HPF/SX V2 as well as
HPF2.0 and HPF/JA are shown in Fig. 2.

HPF2.0
(core)

Approved Extensions

HPF/JA

task parallelism
etc.

INDIRECT distribution
mapped pointers
RANGE
mapping of derived type
components

GEN_BLOCK
SHADOW
remapping

REDUCTION kind
INDEX_REUSE
asynchronous comm.
etc.

vectorization directives

ON

LOCAL&REFLECT

HALO

Features of HPF/SX V2

automatic parallelization

Fig. 2 Features of HPF/SX V2 (Underline means the
features are described in this paper)

These features provided by HPF/SX V2 are
aimed mainly at writing programs of regular
problems effectively.

In parallelizing regular problems, compu-
tation partitioning and communication gen-
eration are significant for efficient execution.
HPF/SX V2 can determine computation parti-
tioning and communication generation not only

automatically on the basis of the data layout
and data-access pattern but according to the
directives specified by users when it cannot de-
termine the optimal by itself.

Considering the characteristics of our target
computers, the SX series supercomputers, it is
also important to increase the vectorization ra-
tio of programs. HPF/SX V2 provides some
unique vectorization directives for users to con-
trol its vectorization facility.

HPF/SX V2 has the capability of automatic
parallelization, which tests data dependency in
a loop and parallelizes it automatically if pos-
sible.

In the rest of this section, we describe the
features one by one.

3.1 ON directive
HPF/SX V2 tries to determine the compu-

tation partitioning for loops or statements on
the basis of the owner-computes rule. For some
loops, however, the one determined by the com-
piler is not optimal and, as a result, perfor-
mance is degraded because of loops parallelized
inefficiently or expensive communications gen-
erated. In such a case, users can instruct the
compiler to adopt a better computation parti-
tioning by writing an ON directive defined in the
HPF 2.0 approved extensions3).

Although, according to the HPF 2.0 approved
extension, the ON directive is for declaring a
task, which is a code block to be executed con-
currently with the other tasks in a task par-
allel execution, and assigning a set of proces-
sors, called an active processor set, to the task,
HPF/SX V2 now restricts the usage of the di-
rective to specifying computation partitioning
for loops or statements.

Consider the example shown in Fig. 3: With-
out the ON directive, the compiler would select
a(i) as the home array for the loop and parti-
tion computations so that the i’th iteration of
the loop is executed on the processor that owns
a(i). In this case, three SHIFT-type commu-
nications, for the array b, c, and d, respectively,
are generated. By following the ON directive and
selecting b(i+1) as the home array, the com-
piler generates only one SHIFT-type communi-
cation for the array a to reduce communication
overhead by a great extent.

3.2 REFLECT and LOCAL directives
It is crucial for HPF compilers to detect

and execute effectively SHIFT-type commu-
nications particularly in regular problems, or
nearest-neighborhood codes.
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!HPF$ DISTRIBUTE (BLOCK) :: a, b, c

!HPF$ INDEPENDENT
      do i=1, 99
!HPF$  ON HOME( b(i+1) )
       a(i) = b(i+1) + c(i+1) + d(i+1)
      end do      

Fig. 3 Example of the ON directive

A standard technique used frequently for the
purpose is to allocate storage on each processor
for the local array section so as to include ad-
ditional space for the elements that have to be
moved in from neighboring processors. This ad-
ditional space is called a SHADOW area. The
SHADOW directive in the HPF 2.0 approved ex-
tensions is defined to declare a SHADOW area
for an array and promote the compiler opti-
mization.

Nevertheless, the specification of the directive
does not mention the method of the optimiza-
tion itself and, therefore, there are some cases
occurred where a shadow area is declared but
not utilized by compilers.

The REFLECT and LOCAL directives defined
in the HPF/JA language specification5) allow
users to directly specify the access of a shadow
area and reduce communication overheads. The
REFLECT directive is an executable directive,
used for updating the shadow area of the ar-
rays each processor owns. The LOCAL directive
is the assertion to the compiler that each pro-
cessor must use the data in its shadow area for
a remote data access.

The LOCAL directive can be said to be a
stronger assertion than the RESIDENT directive
of the HPF 2.0 approved extensions in that
there should not be any communications needed
for a local array, whereas there may be commu-
nications needed within the active processor set
for a resident array.

The REFLECT and LOCAL directives when
specified appropriately can improve execution
performance for regular problems. Three ex-
amples of their usage are shown below.

The first is a case where a compiler cannot
detect SHIFT-type communications. HPF/SX
V2 analyzes the data layout and access pattern
of each array to detect SHIFT-type communi-
cations. For the loop in Fig. 4, however, the
compiler fails to detect a SHIFT-type commu-
nication because a variable k, which is not a
compile-time constant, appears in the subscript

of the array b. In such a case, users can instruct
the compiler to generate a SHIFT-type commu-
nication with REFLECT and LOCAL, as shown in
Fig. 4,☆ if they know k has a value equal to or
less than the shadow width of b.

      subtoutine sub(k)
      ...
!HPFJ REFLECT b
!HPF$ INDEPENDENT
      do i=1, 99
!HPF$  ON HOME( a(i) ), LOCAL(b)
       a(i) = a(i) + b(i+k)
      end do

Fig. 4 Example of the REFLECT and LOCAL directives
(1)

The second is a case where a compiler cannot
union two or more communications to elimi-
nate redundant ones for some reason. While
HPF/SX V2 has the capability of such an op-
timization, comparing generated communica-
tions with one another and eliminating redun-
dant ones if possible, it sometimes cannot do
the optimization sufficiently for the reason that
accurate data-flow or control-flow information
are not available at compiler-time.

For the program of Fig. 5, a naive implemen-
tation generates s SHIFT-type communication
for the array b before each of the two loops. If it
were not for any definitions to the array b along
any path from the first loop to the second on
the control-flow graph, the communication gen-
erated before the second loop was redundant
and could be eliminated. Actually, the array b
appears as an actual argument of a subroutine
call between the two loops and may be updated,
and, therefore, the compiler cannot do this op-
timization unless it performs an inter-procedure
analysis. The REFLECT and LOCAL directives are
also useful in this case.

The third is a case where a compiler cannot
hoist loop-invariant communications out of a
loop. A communication generated in a loop de-
grades execution performance significantly be-
cause the communication occurs at each itera-
tion of the loop at runtime. HPF/SX V2 hoists
such a communication out of the loop if the
communication is loop-invariant. Here, a com-
munication is loop-invariant at a loop if the ar-
ray to be communicated is not modified in the

☆ “!HPFJ” is the prefix of the HPF/JA extensions.
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!HPFJ REFLECT b
!HPF$ INDEPENDENT
      do i=1, 99
!HPF$  ON HOME( a(i) ), LOCAL(b)
       a(i) = a(i) + b(i+k)
      end do
      ...
      call sub(b)
      ...
!HPF$ INDEPENDENT
      do i=1, 99
!HPF$  ON HOME( a(i) ), LOCAL(b)
       a(i) = a(i) + b(i+k)
      end do

Fig. 5 Example of the REFLECT and LOCAL directives
(2)

loop and the communication pattern (i.e., map-
ping of the array and the width to be shifted
for SHIFT-type communications) does not vary
during the whole iterations.

In the example of Fig. 6, a SHIFT-type com-
munication for an array b is needed. If no defi-
nition to the array b is found in the outer istep
loop, the best point at which the SHIFT-type
communication can be generated is out of the
istep loop. If your compiler is smart enough,
it determines the point. Even if not, you can
instruct it with the REFLECT and LOCAL direc-
tives, as shown in Fig. 6.

!HPFJ REFLECT b
      do istep=1, N
        ...
!HPF$   INDEPENDENT
        do i=1, 99
!HPF$     ON HOME( a(i) ), LOCAL(b)
          a(i) = a(i) + b(i+1)
        end do
        ...
        call sub(b)
        ...
      end do

Fig. 6 Example of the REFLECT and LOCAL directives
(3)

3.3 Vectorization directives
It is important to increase the vectorization

ratio in order to achieve good performance
on vector machines such as the SX series su-
percomputer. Even though the backend For-
tran compiler of HPF/SX V2 has the capabil-
ity of advanced automatic vectorization, there

are loops that it cannot automatically vector-
ize because of complicated data dependencies.
There is another case where various transforma-
tions, such as array subscript conversion, loop
restructuring, etc., done for parallelization by
the translator may prevent vectorization.

The vectorization facility of HPF/SX V2 can
be controlled through our unique vectorization
directives. Such directives inserted into source
programs are accepted by the compiler and used
for generating more efficient vectorized codes.

Currently, HPF/SX V2 accepts a subset of
the FORTRAN90/SX vectorization directives,
which includes:

• shortloop, which asserts that the length
of the loop does not exceed the system’s
vector register length, allowing an special
optimization for such a short loop;

• vector, which instructs the compiler to
vectorize the loop;

• novector, which instructs the compiler not
to vectorize the loop;

• select (vector|concur), which instructs
the compiler whether the loop is to be vec-
torized or parallelized on SMPs; and

• nodep, which asserts that the loop does not
have any dependency in it that prevents
vectorization.

These directives must be preceded by the prefix
“!CDIR”.

For example, to parallelize the outer of such a
doubly nested loop, as in Fig. 7, and vectorize
the inner, users should specify a NODEP direc-
tive to the inner loop, because a vector sub-
script ksamp is found in the first dimension of
the array trout which is to be updated in the
loop and consequently the compiler cannot de-
termine whether any dependence exists in the
loop or not.

!HPF$ independent
      do iv=1, nvus
!CDIR  NODEP
       do j=1, lvec
        trout(ksamp(j,iv),iv) = trout(ksamp(j,iv),iv)
     & + wt(j + jbeg,iv)*(trin(isamp(j,iv),iv)
     & + del(j,iv)*(trin(isamp(j,iv) + 1,iv) - 
     &              trin(isamp(j,iv),iv)))
       end do
      end do

Fig. 7 Example of the vectorization directives (from
Benchmark gmo)

3.4 Automatic parallelization
The specification of HPF says

that INDEPENDENT loops and FORALL loops
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may be parallelized by an HPF compiler, but
the others are not certain. Therefore, to
achieve good scalability, users must insert an
INDEPENDENT directive as well as NEW and
REDUCTION clauses before each of the loops to
be parallelized, or translate it into FORALL man-
ually. These tasks are very tedious for users to
perform.

HPF/SX V2 has the capability of automatic
parallelization; it tests data dependency among
arrays in each loop, detects NEW variables and
parallelizes the loop if possible. Unfortunately,
the function of detecting reductions automati-
cally is not available now and is one of the tar-
gets of future work. The test is performed on
the basis of an extended GCD test12), which
would make possible nearly strict analysis for
linear subscripts.

This feature releases users from the burden
of inserting INDEPENDENT and NEW into their
source programs.

4. Evaluation

We evaluated the features of HPF/SX V2 de-
scribed in this paper by using some benchmark
programs on NEC SX-5. We also evaluated
overall performance of HPF/SX V2 using over
30 well-known benchmark programs.

For the evaluation, we used the SX-5 single-
node system with 16 processors and a 128-G
byte main memory, running under the SUPER-
UX (R10.1) operating system. Evaluated com-
pilers were HPF/SX V2 (Rev. 1.1.1 – develop-
ing version) and FORTRAN90/SX (Rev. 205).
Default values were used for all compiler op-
tions (with one exception). The timing routines
used were mpi wtime for HPF and clock for For-
tran. Note that the former measures elapsed
time while the latter measures CPU time, so
the Fortran-compiled version has a slight ad-
vantage over the HPF-compiled version.

4.1 Evaluation of the new features of
HPF/SX V2

Evaluation results for the features of
HPF/SX V2 are shown one by one in the fol-
lowing sections.

4.1.1 tomcatv
tomcatv is a benchmark program of mesh

generation from APR’s public domain bench-
mark suite.13) The size of each array is extended
into 4,097×4,097. Fig. 8 shows the main loop
of this program.

This loop has some candidates for a home ar-
ray in it. Without any ON directive, HPF/SX

!HPF$ independent
      DO 250 i = i1p, i2m
!HPF$ on home( aa(:,i) ) begin
        ...
        DO 310 j = j1p, j2m
          ...
          xx = x(j,i+1) - x(j,i-1)
          ...
          aa(m,i) = -b
          dd(m,i) = b + b + a * rel
          ...
  310   CONTINUE
!HPF$ end on
  250 CONTINUE

Fig. 8 Benchmark tomcatv

V2 would determine one of them, x(:,i+1),
as a home array, with the result of eight ex-
pensive communications. If x(:,i) is speci-
fied as a home array with an ON directive as
in the program, only two SHIFT-type commu-
nications are generated.

Table 1 and Fig. 9 show the evaluation re-
sult. The row of “F90” in the table means
the results of single-processor execution of the
program compiled by FORTRAN90/SX. “orig-
inal” and “on” represent the result of the HPF-
compiled program without and with ON speci-
fied, respectively. The graph shows speedups
relative to single-processor execution of the
“original” version. The result shows that about
a 1.3 times speedup can be achieved by specify-
ing appropriate computation partitioning with
an ON directive. The ON directive also im-
proves the time of 1-CPU execution to the ex-
tent equaling that of Fortran90.

Because, in this program, the i loop to be
parallelized is also to be vectorized by HPF/SX
V2, the vector length, that is the loop length
to be executed by a processor, decreases as
the number of processors increases. The vec-
tor length goes down to 256, which equals the
system’s vector register length, in 16-CPU par-
allel execution and, as the result, performance
is degraded because of the shorter vector length.

4.1.2 SOR
SOR is a benchmark program of the Red-

Black SOR algorithm, which iterates 100
times four “five point stencil” computations,
each of which updates (odd,odd), (even,even),
(odd,even) and (even,odd) elements of an ar-
ray, respectively. The size of the array is
4,097×4,097.

The evaluation result is shown in Table 2
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Table 1 Evaluation result of tomcatv (execution
time)

#PE original (sec) on (sec)
F90 23.10 –
1 31.99 23.90
2 16.21 11.91
4 8.50 6.29
8 4.65 3.36
16 3.94 3.11
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Fig. 9 Evaluation result of tomcatv (speedup)

      DO K=1, 100
!HPFJ  reflect a
!HPF$  independent
       DO J=1, (N-1)/2
!HPF$   on home( a(:,2*J+1) ), local
        DO I=1, (N-1)/2
         A(2*I+1, 2*J+1) = (W/4)*(A(2*I,   2*J+1)+
     &                            A(2*I+2, 2*J+1)+
     &                            A(2*I+1, 2*J  )+
     &                            A(2*I+1, 2*J+2))
     &                   + A(2*I+1, 2*J+1)*(1-W)
        END DO
       END DO
        ...
      END DO

Fig. 10 Benchmark SOR

and Fig. 11. The “original” is for the pro-
gram with only mapping directives specified
and neither INDEPENDENT nor ON. While the
compiler can automatically parallelize all po-
tentially parallel loops and determine the best
computation partitioning for them, it cannot
emit the optimal communications, with the
result of performance degradation. The “re-
flect+local” represents the program into which
REFLECT and LOCAL directives are inserted to
optimize communications. The “reflect+local”
is 1.5-2.0 times faster than “original”. The time
of 1-CPU execution is also improved to equaling
that of “F90”, as compared with “original”.

The speedups of both “original” and “re-
flect+local” degrade slightly as the number of
processors increases, because communication
costs tend to dominate overall execution time
as the number of processors increases.

4.1.3 gmo
gmo is a benchmark program of a gener-

Table 2 Evaluation result of SOR (execution time)

#PE original (sec) reflect+local (sec)
F90 2.73 –
1 5.15 3.00
2 2.62 1.52
4 1.42 0.83
8 0.86 0.57
16 0.70 0.36
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Fig. 11 Evaluation result of SOR (speedup)

alized moveout seismic kernel from the HPF-
Bench benchmark suite.14) This program con-
tains such loops as shown in Fig. 7. As de-
scribed above, the inner loop cannot be vector-
ized unless nodep is inserted, and, consequently,
the outer loop is both parallelized and vector-
ized.

The evaluation result is shown in Table 3
and Fig. 12. Note that a compiler option
which prohibit the backend Fortran compiler
from performing loop interchange optimization
is specified for correctness of the evaluation.
The “nodep” representing the program with
nodep is about 1.4 times faster than the “orig-
inal” representing the one without nodep. The
vector operation ratio of the “nodep” is about
93% in 16-CPU parallel execution, whereas that
of the “original” is about 78%☆.

Table 3 Evaluation result of gmo (execution time)

#PE original (sec) nodep (sec)
F90 33.13 19.89
1 36.19 25.63
2 17.47 12.88
4 8.93 6.43
8 4.47 3.23
16 2.42 1.63

4.1.4 shallow
shallow is a benchmark program of a shallow

water model from APR’s public domain bench-
mark suite. The size of arrays are extended into

☆ The values of vector operation ratio are obtained
from the hardware monitor of the target machine.
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Fig. 12 Evaluation result of gmo (speedup)

4,097×4,097, and only mapping directives and
no other directives are specified.

Table 4 and Fig. 13 show the evaluation re-
sult. As against 346 lines of the whole pro-
grams consisting of 8 procedures, only 15 lines
of directives, which is about 4.3% of the whole,
are specified. Although neither INDEPENDENT,
ON, REFLECT nor LOCAL directives are specified,
HPF/SX V2 can automatically parallelize all
potentially parallel loops, determine the best
computation partitioning and generate optimal
communications, with the result of an almost
linear speedup of the performance. The re-
sult shows that only mapping directives, such
as DISTRIBUTE , ALIGN , etc., are sufficient to
achieve good performance of this benchmark
program.

Table 4 Evaluation result of shallow (execution
time)

#PE (sec)
F90 10.34
1 14.01
2 7.04
4 3.56
8 1.80
16 0.94
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Fig. 13 Evaluation result of shallow (speedup)

4.1.5 Summary
The evaluation results show that the pro-

grams modified using the new features of
HPF/SX V2 have been improved to about 1.3-
2.0 times faster than the original. It can also be
seen from the results that the features improve
the performance in 1-CPU execution to nearly
that of Fortran90. The feature of automatic
parallelization can parallelize simple programs,
such as shallow with neither INDEPENDENT or
NEW inserted. Consequently, it can be said that,
by using HPF/SX V2, good performance can
be achieved easily with only mapping directives
specified for relatively simple programs, and
with the other HPF directives and the unique
features of HPF/SX V2 for many of the other
programs.

4.2 Evaluation on overall performance
of HPF/SX V2

This section presents the evaluation results of
well-known benchmark programs, from HPF-
Bench, APR Benchmarks, GENESIS Bench-
marks, and NAS Parallel Benchmarks, to eval-
uate overall performance of HPF/SX V2.

Each measurement is done in a multi-user en-
vironment and the results listed below are the
best of (at least) five-time measurements.

Note that in this section we used some bench-
marks also used in the evaluations of the pre-
ceding sections, and some of these results differ
from that of the above sections because of dif-
ferent compiler option or array size.

4.2.1 HPFBench
The HPFBench14) benchmark suite is a set

of High Performance Fortran codes intended
for evaluating HPF languages and compilers on
scalable parallel architectures. The functional-
ity of HPFBench covers linear algebra library
functions and application kernels that reflect
the computational structure and communica-
tion patterns in typical scientific applications.

Linear algebra library functions are:

(1) triangular solvers – conjugate gradient
(conj-grad) and parallel cyclic reduction
(pcr)

(2) fast Fourier transform (fft)
(3) Gauss-Jordan matrix inversion (gauss-

jordan)
(4) Jacobi eigenanalysis (jacobi)
(5) LU factorization (lu)
(6) matrix-vector multiplication (matrix-

vector)
(7) QR factorization and solution (qr)

and application kernels are:
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(1) many-body simulation (boson)
(2) diffusion equation in three dimensions us-

ing an explicit finite difference algorithm
(diff-3d)

(3) Poisson’s equation by the conjugate gradi-
ent method (ellip-2d)

(4) solution of the equilibrium equations in
three dimensions by the finite element
method (fem-3d)

(5) seismic processing: generalized moveout
(gmo)

(6) spectral method: integration of Kuramoto-
Sivashiniski equations (ks-spectral)

(7) molecular dynamics, Leonard-Jones force
law (mdcell and md)

(8) generic direct N-body solvers with long-
range forces (n-body)

(9) particle-in-cell in two dimensions (pic-
simple and pic-gather-scatter)

(10) QCD kernel: staggered fermion conjugate
gradient method (qcd-kernel)

(11) quantum Monte-Carlo (qmc)
(12) quadratic programming (qptransport)
(13) solution of nonsymmetrical linear equa-

tions using the Conjugate Gradient Method
(rp)

(14) Euler fluid flow in two dimensions using an
explicit finite difference scheme (step4)

(15) wave propagation in one dimension (wave-
1d)

Table 5 and Figs. 14, 15, and 16 show
the evaluation results for linear algebra library
functions. The results were obtained using “as
is” codes, i.e., codes without any modification
such as “vector tuning”. Each row in an en-
try denotes the execution time in seconds and
speedups relative to single-processor execution
of the HPF-compiled version. Column F90
presents the results of single-processor execu-
tion of programs compiled by the native Fortran
90 compiler (FORTRAN90/SX), and HPF/1,
/2, /4, and /8 present the results of 1-, 2-, 4-,
and 8-processor executions of programs com-
piled by HPF/SX V2, respectively.

As shown in the table and graphs, some
benchmarks demonstrated poor performance.
The major reasons are as follows:

fft: Runtime routine for copy scatter of
HPF LIBRARY dominates the execution
time.

gauss-jordan: Runtimes for the maxloc and
matmul intrinsics dominate the execution
time.

jacobi: Runtime for the cshift intrinsic dom-
inates the execution time and most is con-
sumed in constructing communication sched-
ules. The schedules are constructed every
time when cshift is called, but they are con-
stant and, therefore, should be reused for the
identical cshift.

matrix-vector: Runtime for the sum intrin-
sic dominates the execution time. Vector op-
eration ratio was also downgraded from 99%
(F90) to 90% (HPF/8).

Table 6 and Figs. 17, 18, and 19 show
the evaluation results for application kernels.
Again, the results were obtained using “as is”
codes. Some of the programs had the following
problems:

diff-3d: The result of HPF/1 costs over 55
times as much as that of F90. It is mainly due
to the cost of constructing a communication
schedule carried out on every time-marching
iteration. Using a REFLECT directive of the
HPF/JA extension, the schedule construction
can be hoisted out of the loop, then the per-
formance dramatically improves (labeled as
“modified” in the table). The modified ver-
sion is not scalable because of genuine com-
munication costs.

ellip-2d, rp: Runtimes for the cshift intrinsic
dominate the execution time.

Although we tried to evaluate all of the pro-
grams of HPFBench, some were not available
for the following reasons:

fft-1d, fft-2d, fft-3d, boson, ellip-2d,
ks-spectral, qmc, wave-1d: The F90 re-

sults are not available because these pro-
grams use HPF LIBRARY3) routines and FOR-
TRAN90/SX cannot compile them.

lu: The F90 results are not available because
of HPF LIBRARY routines and the HPF/8 re-
sults are not available because this program
terminates abnormally with a wrong result in
8-CPU parallel execution.

fem-3d, pic-simple, qptransport: Again,
the F90 results are not available because of
HPF LIBRARY routines. The execution times
of HPF versions are very long and could not
be measured in this evaluation.

mdcell: Both F90 and HPF executions termi-
nate with a user-specified error message. It
is assumed that something was wrong with
either the benchmark source codes or input
data.
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pic-gather-scatter: Since a CM Fortran20)

procedure CMF FE ARRAY TO CM is used in this
program, FORTRAN90/SX and HPF/SX V2
cannot compile it.
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Fig. 14 Results of HPFBench: Linear Algebra Library
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Fig. 15 Results of HPFBench: Linear Algebra Library
Functions (2) – HPF’s performance is inferior
to F90’s.

4.2.2 APR Benchmarks
The APR’s public domain benchmark suite13)

is the HPF program collection made by Applied
Parallel Research for the purpose of evaluating
their own HPF compiler. The suite includes
many famous benchmarks, such as shallow,
tomcatv, and grid. Table 7 and Figs. 20 and
21 present the evaluation results for our origi-
nal tuned versions of the benchmarks. Column
Mod/Src displays the ratio of HPF directive
lines and original source lines (without com-
ments and blank lines). All benchmarks showed
good performance except for rhs 90. In rhs 90,
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the result of HPF/1 is much worse than that of
the F90. Runtime routines for the eoshift in-
trinsic dominate the execution time, and that
fact suggests the eoshift’s runtimes are ineffi-
cient. The performance of x42 were improved
by specifying HPF/JA’s REFLECT directive on
the main loop to control communication sched-
ule construction (labeled as “with reflect” in the
Table).

4.2.3 Other benchmarks
The results of some other benchmarks are

shown in Table 8 and Fig. 22. The program
trans1 from the GENESIS benchmarks17)
measures the performance of an array trans-
position operation. The result is bad mainly
due to inefficient runtimes. The programs EP
and SP are from the NAS Parallel Benchmarks
(NPB-1)18). They are moderately scalable.
These programs are relatively large and com-
putation costs dominate the overall execution
time, even on a vector multi-processor system.
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Table 5 Results of HPFBench: Linear Algebra Library Functions

Program Size/Layout F90 HPF/1 /2 /4 /8

conj-grad
16777216 0.8144 0.6423 0.3266 0.2530 0.1341
(block) (0.789) (1.000) (1.967) (2.539) (4.791)

fft-1d
1048576 n/a 3.3857 2.6355 1.3841 0.7496
(block) – (1.000) (1.285) (2.446) (4.517)

fft-2d
1024x1024 n/a 7.4635 5.7974 3.0436 1.5490

(b,b) – (1.000) (1.287) (2.452) (4.818)

fft-3d
128x128x64 n/a 15.0218 12.7420 5.5921 3.1404

(b,b,b) – (1.000) (1.179) (2.686) (4.783)

gauss-jordan
1024x1024 22.4771 70.6791 38.0925 21.6066 13.2468

(b,b) (3.144) (1.000) (1.855) (3.271) (5.336)

jacobi
512x512 32.5512 70.2504 81.8526 62.7482 53.5185

(b,b) (2.158) (1.000) (0.858) (1.120) (1.313)

lu: nopivot
1024x1024 n/a 5.9489 3.1699 1.8431 n/a

(b,b) – (1.000) (1.877) (3.228) –

lu: pivot
1024x1024 n/a 7.7357 4.8514 3.0193 n/a

(b,b) – (1.000) (1.595) (2.562) –

matrix-vector (1)
4096x4096 9.8527 46.6450 23.3257 11.6767 5.8529

(b,b) (4.734) (1.000) (2.000) (3.995) (7.970)

matrix-vector (2)
4096x4096 9.7536 46.6465 23.3283 12.2170 6.2455

(b,b) (4.783) (1.000) (2.000) (3.818) (7.469)

matrix-vector (3)
4096x4096 2.9940 29.2297 15.1836 5.9546 3.7840

(b,b) (9.763) (1.000) (1.925) (4.909) (7.725)

matrix-vector (4)
4096x4096 9.8514 46.6856 23.3497 12.2623 3.4836

(b,b) (4.739) (1.000) (1.999) (3.807) (13.401)
pcr (a) 1024x1024 1.328 1.525 0.778 0.854 0.475

(Real, coefs, instances) (b,b) (1.148) (1.000) (1.960) (1.786) (3.211)
pcr (b) 1024x1024 1.328 0.852 0.513 0.329 0.225

(Real, instances, coefs) (b,b) (0.642) (1.000) (1.661) (2.590) (3.787)
pcr (c) 1024x1024 2.718 3.061 1.535 1.339 0.715

(Complex, coefs, instances) (b,b) (1.126) (1.000) (1.994) (2.286) (4.281)
pcr (d) 1024x1024 2.718 2.374 1.284 0.728 0.432

(Complex, instances, coefs) (b,b) (0.873) (1.000) (1.849) (3.261) (5.495)

qr: factor
512x512 1.7940 3.3400 2.0070 1.7310 1.2070

(b,b) (1.862) (1.000) (1.664) (1.930) (2.767)

qr: solve
512x512 4.9650 6.3970 3.5160 2.5020 1.5600

(b,b) (1.288) (1.000) (1.819) (2.557) (4.101)
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Fig. 18 Results of HPFBench: Application Kernels
(2) – HPF’s performance is inferior to F90’s.

4.2.4 Summary
The results suggest several aspects of

HPF/SX V2.

• There are few cases that the poorness of
the compiler’s generating codes degrades
the performance. We meet some cases
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Fig. 19 Results of HPFBench: Application Kernels
(3) – F90’s performance is not available.

where useless reconstruction of reusable
communication schedule affects the per-
formance. In these cases, however, we
can suppress the wasteful reconstruction by
using a REFLECT directive defined in the
HPF/JA extensions.

• Since a vector processor’s performance is
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Table 6 Results of HPFBench: Application Kernels

Program Size/Layout F90 HPF/1 /2 /4 /8

boson
8x128x128 n/a 66.1456 33.3061 17.1641 11.7325

(*,b,b) (1.000) (1.986) (3.854) (5.638)

diff-3d
128x128x128 0.5953 33.3210 31.0541 22.7221 14.9631

(b,b,b) (55.973) (1.000) (1.073) (1.466) (2.227)
diff-3d 128x128x128 0.5952 0.9240 5.8784 5.6708 4.2895

(modified) (b,b,b) (1.552) (1.000) (0.157) (0.163) (0.215)

ellip-2d
8192x8192 n/a 5.3082 3.7065 2.3977 1.6081

(b,b) (1.000) (1.432) (2.214) (3.301)

gmo
12000x2048 5.4244 7.9593 4.0025 2.0251 1.0342

(*,b) (1.467) (1.000) (1.989) (3.930) (7.696)

ks-spectral
1024x512 n/a 50.2022 25.7369 15.0321 7.8151

(b,b) (1.000) (1.951) (3.340) (6.424)

md
4000x4000 3.3026 3.0873 1.8329 0.9796 0.8266

(b,b) (0.935) (1.000) (1.684) (3.151) (3.735)
n-body (a) 32768 4.3457 6.3744 4.1220 2.8855 2.4338
(broadcast) (block) (1.467) (1.000) (1.546) (2.209) (2.619)
n-body (b) 32768 6.6655 9.3436 5.1636 2.8616 1.8069

(cshift) (block) (1.402) (1.000) (1.810) (3.265) (5.171)
n-body (c) 32768 5.0388 8.4466 4.4680 2.3708 1.3442
(cshift-sym) (block) (1.676) (1.000) (1.890) (3.563) (6.284)
n-body (d) 32768 6.4219 6.4550 4.0500 2.9308 2.5005

(spread) (block) (1.005) (1.000) (1.594) (2.203) (2.582)

qcd-kernel
5x2x8x8x8x8 27.0018 16.5372 8.8305 4.7797 2.7196
(*,b,b,b,b,b) (0.612) (1.000) (1.873) (3.460) (6.081)

qmc
8192x128 n/a 27.0205 17.0990 12.6644 8.0175

(b,b) (1.000) (1.580) (2.134) (3.370)

rp
256x256x256 0.7027 9.7960 8.6301 6.0965 4.1586

(b,b,b) (13.940) (1.000) (1.135) (1.607) (2.356)

step4
1024x512 5.252 2.177 1.774 1.201 0.886

(b,b) (0.415) (1.000) (1.227) (1.813) (2.457)

wave-1d
16777216 n/a 70.2298 50.3420 26.0664 13.8512
(block) (1.000) (1.395) (2.694) (5.070)
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Fig. 20 Results of APR Benchmarks (1) – HPF’s
performance is near to F90’s.

relatively high, communication costs tend
to dominate overall costs in SX-5. To
achieve high performance, problem sizes
should generally be as large as possible.

• There are many cases where the poorness
of the runtime routines degrades the per-
formance. That is a major problem be-
cause users cannot control these runtimes
by themselves. Some reasons for the perfor-
mance degradation and possible improve-
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Fig. 21 Results of APR Benchmarks (2) – HPF’s
performance is inferior to F90’s.

ments are as follows:

vectorization There are unvectorized
loops found in the runtime routines, such
as reduction operations, sum intrinsic,
etc. Some of these loops can be vec-
torized only by inserting vectorization
pragma and the others need to be re-
structured.

communication scheduling How to
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Table 7 Results of APR Benchmarks

Program Mod/Src Size/Layout F90 HPF/1 /2 /4 /8

baro
16/472 3002x1502 4.3830 4.3310 2.2059 1.1485 0.6250
(3.39%) (*,b) (0.988) (1.000) (1.963) (3.771) (6.929)

grid
14/108 500x500x2 0.4568 0.4738 0.2467 0.1311 0.0735

(12.96%) (*,b,*) (1.037) (1.000) (1.921) (3.614) (6.447)

jacx 90
10/80 256x256x256 2.9711 3.2258 1.6066 0.8076 0.3998

(12.50%) (*,*,b) (1.086) (1.000) (2.008) (3.994) (8.069)

ora
4/338 456000 16.3943 16.3931 8.1965 4.0983 2.0492

(1.18%) (block) (1.000) (1.000) (2.000) (4.000) (8.000)

pde1
17/236 512x512x512 119.325 110.807 55.4094 28.4544 16.0597
(7.20%) (*,*,b) (0.929) (1.000) (2.000) (3.894) (6.900)

rhs 90
5/208 128x128x128 0.3943 30.3681 10.9597 3.7596 1.6943

(2.40%) (*,*,b) (77.018) (1.000) (2.771) (8.077) (17.924)

scalgam
4/559 256000 27.200 27.860 13.980 7.020 3.520

(0.72%) (block) (1.024) (1.000) (1.993) (3.969) (7.915)

shallow
15/346 2561x2561 5.6274 5.8992 2.9956 1.5487 0.8143
(4.34%) (*,b) (1.048) (1.000) (1.969) (3.809) (7.245)

swm256
84/324 2561x2561 20.8260 16.4650 8.7335 4.8961 3.0516

(25.93%) (*,b) (0.791) (1.000) (1.885) (3.363) (5.396)

tomcatv
9/146 5121x5121 36.5765 35.3407 18.5144 9.5544 4.8843

(6.16%) (*,b) (0.966) (1.000) (1.909) (3.699) (7.236)

x42
7/246 512x512 13.4101 14.1448 8.5145 5.4989 4.1524

(2.85%) (*,b) (1.055) (1.000) (1.661) (2.572) (3.406)
x42 10/246 512x512 13.4101 13.4791 7.1256 3.9221 2.2434

(with reflect) (4.07%) (*,b) (1.005) (1.000) (1.892) (3.437) (6.008)

Table 8 Results of other benchmarks

Program Mod/Src Size/Layout F90 HPF/1 /2 /4 /8

trans1
2/86 256x256 0.1050 0.1400 0.1780 0.1890 0.2070

(2.33%) (*,block) (1.333) (1.000) (0.787) (0.741) (0.676)

trans1
2/86 2560x2560 10.4060 7.4310 7.3210 5.9040 5.0530

(2.33%) (*,block) (0.714) (1.000) (1.015) (1.259) (1.471)

EP
2/138 Class A 11.1473 11.2330 5.6176 2.8147 1.4173

(1.45%) (block) (1.008) (1.000) (2.000) (3.991) (7.926)

SP
29/3464 Class A 881.10 712.10 349.50 188.10 107.70
(0.84%) (*,*,b) (0.81) (1.00) (2.04) (3.79) (6.61)
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Fig. 22 Results of other benchmarks

schedule communications on each proces-
sor has a great impact on the perfor-
mance. Especially in an array transposi-
tion operation that occurs in an intrinsic
procedure TRANSPOSE or array remap-
ping, communications are executed in se-
quence by each processor and its perfor-

mance is not scalable. The array trans-
position operation must be sophisticated
by a better scheduling algorithm such as
that described in 19).

communication-schedule construction
Our evaluation shows that constructing a
communication schedule itself is a rather
heavy task. The schedules of communi-
cation executed in such runtimes as cshift
and eoshift are constructed every time
when they are called, and they are very
time-consuming. Besides the optimiza-
tion of re-using a communication sched-
ule at both compile-time and runtime,
communication-schedule construction al-
gorithm should be improved particularly
for irregular communications.

5. Conclusion

HPF/SX V2 provides some unique extensions
for vector parallel machines as well as the fea-
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tures of HPF 2.0 and HPF/JA. In this paper,
we described four of them: the ON directive, the
REFLECT and LOCAL directives, vectorization di-
rectives, and automatic parallelization.

We compiled some benchmark programs us-
ing the features and evaluated their perfor-
mance on an NEC SX-5. The results show that
they achieve a 5-8 times speedup in 8-CPU par-
allel execution and it can be said that the four
features are useful for vector parallel machines.
We also evaluated over 30 well-known bench-
marks, and about half of those show good per-
formance. The other half suggest the compiler’s
runtime is not sufficiently tuned yet and should
be more sophisticated.

We plan to strongly enhance HPF/SX V2
by studying these results in more detail. In
addition, INDIRECT distribution,3) HALO,16)
and INDEX REUSE directives5) are under devel-
opment and will be supported in the next re-
lease. The HALO feature enables users to
control communications of any pattern effec-
tively to handle irregular problems. Coopera-
tion with parallel execution on SMPs, task par-
allelism, parallel I/O, asynchronous communi-
cations, and tool support are also the targets of
future work.
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