ユーザーサイドから見たこれまでの経験と将来像

CP-PACS プロジェクトについて

~計算科学専用計算機開発における物理屋の役割~

金谷 和至

(元筑波大学計算物理学研究センター 現筑波大学)

講演者紹介

- 名前: 金谷 和至(かなや かずゆき)
- 現職: 筑波大学 大学院数理物質科学研究科 物理学専攻 教授
- 略歴: 1955年 広島県生まれ
 - 1977年 広島大学理学部物理学科 卒業
 - 1982年 名古屋大学大学院理学研究科博士課程物理学専攻 修了、理学博士 ドイツのビーレフェルト大学、アーヘン工科大学、スイスのベルン大学での ポスドクを経て、
 - 1988年 筑波大学物理学系 助手
 - 1992年 同 助教授(計算物理学研究センター)
 - 2000年 同 教授(2004年 組織替えにより現職)

現在に至る。

日本物理学会に所属し、専門は素粒子物理学(理論)。特に大規模シミュレーション による量子色力学の基本的性質や高温・高密度クォーク物質の物性に関する研究を 行っている。また、そのための専用計算機開発として、QCDPAX, CP-PACS, PACS-CS などのプロジェクトに参加。

CP-PACSプロジェクト について

計算科学専用計算機開発における物理屋の役割

筑波大学数理物質科学研究科物理学専攻 金谷和至 <u>kanaya@ccs.tsukuba.ac.jp</u>

> 2011/9/10 三好甫先生記念 計算科学シンポジウム

CP-PACS

Computational Physics by Parallel Array Computer System 筑波大学 計算物理学研究センター (現計算科学研究センター (5)

● 1991 開発開始
● 1996 稼働開始
● 1996/10 Top500で第1位に
● 2005 shutdown

614.6 GFlops (peak), 128 GB
 2048 PU + 128 IOU
 8x17x16 HXB network, 300 MB/sec/link
 529 GB RAID-5
 275 kW

http://www.ccs.tsukuba.ac.jp/cppacs/cppacs-j.html

素粒子と格子QCD PAX/PACSシリーズのこと ~ QCDPAX ~ *CP-PACSの開発における物理屋の役割* 暗黒のミーティング => 河辺峻さん Sliding Window *CP-PACSの成果*

CP-PACSの背景と動機

『場の物理』専用計算機

素粒子・宇宙などのシミュレーションが主目的

ターゲットとする計算のタイプを明確にしながら、 物理屋 + 計算機工学屋 + 製造メーカー(日立) の密接な共同作業で開発された。

原子核の謎: どうしてあんな小さな所に、反発し合う陽子を固められる? クォークの謎: クォークを核子から取り出せない! 「閉じ込め」

=> 電磁気力よりずっと強い新たな力
=> 「強い力」

クォーク3個で中性になる => 核子 そこからわずかに漏れ出る強い力で、原子核は固まっている。

「強い力」の基礎理論:Quantum ChromoDynamics (量子色力学) 強結合の非線形系なので、数値シミュレーションが必要。

格子QCD

Quantum ChromoDynamics (量子色力学):場の理論 強結合系 + 非線形問題 + 無限個の自由度 連続時空の各点に力学的自由度

計算機にのせるために、まず有限自由度に K. Wilson (1974) 時空の格子:

L: 格子サイズ a: 格子間隔 格子点の数(格子体積) V = (L/a)⁴ L, a が有限なら、問題も有限。 最後に、L→∞, a→0 連続極限外挿

格子QCD

観測量 <=「経路積分」 <= Monte Carlo 法で評価 $Z = \int \cdots \int \Pi dq \, \Pi dU \, e^{-S[q,U]}$ $\langle \mathcal{O} \rangle = \frac{1}{Z} \int \cdots \int \Pi dq \, \Pi dU \, \mathcal{O}[q,U] \, e^{-S[q,U]}$

格子QCD

 $\langle \mathcal{O} \rangle = \frac{1}{Z} \int \cdots \int \Pi dq \, \Pi dU \, \mathcal{O}[q, U] \, e^{-S[q, U]}$ ▶ e-sの重みで配位[q,U]を生成(Monte Carlo法) ▶ 主要な計算:高次元線形連立方程式の求解 <= qの扱いのトリック D[U] x = b $D[U] : 12V \times 12V$ sparse complex matrix CG等の再帰的解法 => 行列とベクトルの積 D[U] q の計算 演算:メモリアクセス ~ 1:1 ▶ 局所的でスケーラブルな問題。ベクトル化、並列化に適している。 ▶ 主要な通信:PU境界部分に関する隣接通信 物理格子をPUにマップ

格子QCD

 膨大な計算が必要(4次元系、3桁以上のスケール差、フェルミオンの数値計算、など)
 クエンチ近似(重みの計算でクォークを無視・グルオンのみを取り入れた近似) 大胆な近似だが、閉じ込めなどの重要な性質を保つ。計算量は数百分の1
 クォークの重い領域から現実の質量への外挿(省略)

「クエンチ近似はどれだけ良いのか、悪いのか?」も不明だった。

PACS / PAX Processor Array for Continuum Simulation / Processor Array eXperiment

♀ 星野力+川合敏雄

 ● 連続体系シミュレーション <= 2次元最隣接結合 筑波大学で一連の並列計算機を開発していた

Year	Machines	# PU	Performance	Memory	<u>アプリケーション</u>
1978	PACS-9	9	7 KFLOPS		原子炉
1980	PAX-32	32	0.5 MFLOPS	0.5 MB	O(3)スピン, 原子炉
1983	PAX-128	128	4 MFLOPS	5 MB	O(3)スピン, U(1)ゲージ
1984	PAX-32J	32	3 MFLOPS	4 MB	SU(3)ゲージ

QCDPAX

- ♀ 岩崎洋一、吉江友照、金谷和至、星野力、小柳義夫、白川友則、一井信吾
- ♀ 2次元最隣接トーラス結合
 ♀ 1989~1999年稼働 => 格子QCD
 ♀ 480 PU (24x20), 14 GFlops, 3 GB
 ♀ 432 PU (24x18), 12.4 GFlops, 2.6 GB

・製造:アンリツ

QCDの有限温度相転移、ハドロン質量などを研究。

PACS / PAX COMPUTERS

Year	Machines	# PU	Performance	Memory	<u>アプリケーション</u>
1978	PACS-9	9	7 KFLOPS		原子炉
1980	PAX-32	32	0.5 MFLOPS	0.5 MB	O(3)スピン, 原子炉
1983	PAX-128	128	4 MFLOPS	5 MB	O(3)スピン, U(1)ゲージ
1984	PAX-32J	32	3 MFLOPS	4 MB	SU(3)ゲージ
1989	QCDPAX	480	14 GFLOPS	3 GB	QCD
1996	CP-PACS	2048	614 GFLOPS	128 GB	QCD, 宇宙, 物質
2006	PACS-CS	2560	14 TFLOPS	5 TB	QCD, 宇宙, 物質, 生命, 気象

CP-PACSの開発

専用並列計算機による「場の物理」の研究

(研究課題番号 08NP0101)

平成4年度~8年度科学研究費補助金(創成的基礎研究費)

研究成果報告書

平成9年8月

研究代表者 岩崎洋一 (筑波大学物理学系教授)

http://www.ccs.tsukuba.ac.jp/cppacs/file/report97.pdf http://www.ccs.tsukuba.ac.jp/cppacs/kinenshi/

物理サイドからの要求 目的 ● 素粒子物理学:ハドロンスペクトラムのクエンチ計算を完成

 $L \approx 3$ fm, $a \approx 0.1-0.05$ fm で高統計simulation

=> 連続極限とカイラル外挿を行う、系統的研究

♀ 宇宙物理学: 6次元輻射輸送シミュレーション

④ 理論ピーク ≥ 400 GFlops [614 GFlops]

[21 TB]

● 一時記憶 ≥ 1000 GB
 [529 GB]

プロジェクトチーム

			星野	力	(筑波大学	構造工学系)	
7711 44+399 105			中田	育男	(筑波大学	電子・情報工学系)	Ŧ
【研究課題】 専用並列計算機による			白川	友紀	(筑波大学	構造工学系)	П
「場の物理」の研究			和田	耕一	(筑波大学	電子・情報工学系)	
計34名	—— 【小斑索調題】		安永	守利	(筑波大学	電子・情報工学系)	
	「場の物理」専用並列計算機		朴 ま	泰祐	(筑波大学	電子・情報工学系)	
	システムの研究		渡瀬	芳行	(高エネルキ	デー物理学研究所)	
	〈研究班代表者〉		中村	宏	(東京大学	先端科学技術センター)	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1	山下	義行	(筑波大学	電子・情報工学系)	
	情報工学科)		一井	信吾	(東京大学	大型計算機センター)	
【研究リーダー】	他14名		小柳	義夫	(東京大学	理学系研究科)	
岩崎 洋一 —			森ī	E武	(東京大学	工学部)	
(筑波大学 物理学系)			川合	敏雄	(慶応大学	理工学部)	
14-2 1 /17		L	坂井	修一	(筑波大学	電子・情報工学系)	
			宇川	彰	(筑波大学	物理学系)	4
			福来	正孝	(東京大学	宇宙線研究所)	1
			大川	正典	(高エネルキ	「一物理学研究所)	
			青木	慎也	(筑波大学	物理学系)	
	【小研究課題】		金谷	和至	(筑波大学	物理学系)	
	「場の物理」に於ける		吉江	友照	(筑波大学	物理学系)	
	〈研究研代表者〉		石塚	成人	(筑波大学	物理学系)	
	岩崎、洋一 —		中村	卓史	(京都大学	基礎物理学研究所)	
	(筑波大字 物理学系)		観山	正見	(国立天文台	ĵ)	
	他18名		梅村	雅之	(筑波大学	物理学系)	
			中本	泰史	(筑波大学	物理学系)	
			今田	正俊	(東京大学	物性研究所)	
			宮下	精二	(大阪大学	理学部宇宙地球科学科)	
			川合	光	(高エネルキ	ビー物理学研究所)	
			根本	幸児	(北海道大学	★ 大学院理学研究科)	
			押山	淳	(筑波大学	物理学系)	
			郡司	茂樹	(筑波大学	物理学系)	
		L	中村	文隆	(新潟大学	教育学部)	

計算機工学:15名 (ハード+ソフト+システム)

勿理:19名 (素粒子+宇宙+物性)

+ 日立の皆さん (ハード+ソフト+SE+営業+ ...)

写真12 CP-PACS 稼働終了式 2005年9月

前列左から: 渡瀬芳行, 川合敏夫, 星野力, 宇川彰, 岩崎洋一, 中澤喜三郎, 小林二三幸, 佐久間嘉一郎, 小平光彦, 能沢健 中前列左から: 富田雅, 澤本英雄, 河辺峻, 小柳義夫, 吉江友照, 和田耕一, 安永守利, 中村宏, 朴泰祐, 金谷和至 中後列左から: 浅野朋広, 瀧田忠郎, 高橋大介, 荻山得哉, 安崎篤朗, 谷口裕介, 三好一義, 石川健一, 白石賢二, 橋本耕平, 宮脇孝 後列左から: 工藤紀之, 谷嶋則幸, 藤田不二男, 佐藤三久, 平下博之, 原川竹氏, 田中博, 篠原敏一, 伊藤洋志, 板倉憲一

物理 +計算機工学 +メーカー

頻繁にミーティング 報告と濃密な議論

それに向けて連日夜中までテスト・検討

研究員会議									
平成 4 年度	4/10	4/18	5/9	5/23	6/8	6/20	7/13	7/22	9/5
	10/1	10/24	11/7	12/5	1/9	1/21	2/6	2/18	3/6
	3/22								
平成 5 年度	4/3	4/22	5/8	5/20	6/5	6/17	7/3	7/15	8/5
	8/26	9/16	10/1	10/22	11/6	11/18	12/4	12/16	1/17
	2/5	2/17	3/5	3/17					
平成 6 年度	4/14	5/7	5/24	6/4	6/16	7/2	7/14	9/3	9/16
	10/15	11/5	11/17	12/3	12/15	1/19	2/4	2/16	3/3
	3/20								
平成 7 年度	4/20	5/18	6/3	6/15	7/1	9/2	9/21	10/7	10/1
	11/9	11/22	12/9	12/26	1/18	2/3	2/16	3/9	3/21
平成 8 年度	4/19	5/11	5/24	6/15	7/6	7/22	8/23	9/7	9/20
	10/12	11/2	12/7	12/26	1/11	2/1	3/1		
ハードウェア WG									
平成4年度	7/9	7/23	8/6	9/5	9/19	10/5	10/27	11/30	12/2
	1/14	1/28	3/1						
平成 5 年度	4/2	5/7	6/17	8/4	9/24	10/28	12/6	1/28	2/28
平成 6 年度	4/11	5/12	6/6	6/17					
ソフトウェア WG									
平成 4 年度	11/6	12/3	1/21	2/23					
平成 5 年度	4/28	5/31	7/5	8/4	8/31	9/16	10/22	12/16	2/7
	3/10								
平成 7 年度	4/14	5/26	7/1						
ハードウェア									
ソフトウエア合同 WG									
平成 6 年度	7/26	8/30	10/14	11/24	12/27	1/31			
平成7年度	4/20	5/22	6/20	7/27	8/30	9/28	10/26	11/21	12/2
	1/26						-	÷	,
平成 8 年度	5/29	6/28	7/19	8/23	10/18	11/22	12/20	1/24	2/20
コンパイラーサブ WG		-		r	-	r	~		
平成 6 年度	11/4	12/2	2/3						
平成7年度	4/7	5/26	7/21	9/19	11/8	12/25	1/19		
平成 8 年度	4/5	8/7	10/4	$\frac{12}{13}$	1/17	3/11	,		
ベンチマークサブ WG	,	,	e	,	,				
平成 7 年度	1/11								

暗黒のミーティング

1991/8/10

「CPUは速くても、メモリアクセスがボトルネック。 キャッシュprefetchではキャッシュミスを排除しきれず QCDの主要計算でも、実効性能が出ない。」 コア部分の計算でも、ピークの12%しか出ない。 => これでは物理の目標は達成できない! 「暗黒の暑気払い」

○ ベクトル計算機と汎用スカラーCPUとの違い
 ○ キャッシュとレジスターの違い

PVP-SW (Pseudo Vector Processor based on Slide Windowed registers)

SLIDING WINDOW

3D-HYPER CROSSBAR

 2048 PU + 128 IOU
 8x17x16 HXB network, 300 MB/sec/link
 529 GB RAID-5
 275 kW

● 物理の要求:3D以上の隣接● 星野+川合のPACS/PAXを拡張

♀ 日立から提案

- PACS-CSに継承
- block-stride転送をハードで

QCDプログラムによる実測性能

614.6 GFlops (peak)
 2048 PU + 128 IOU

♀ qQCD HB update: 246 GFlops (40%) ♀ qQCD OR update: 280 GFlops (46%) ♀ Wilson quark MR solver: 325 GFlops (53%)

カーネルのクォーク行列積はアセンブラで最適化。60%以上を達成。

格子	$32^3 \times 56$	$40^3 \times 70$	$48^3 \times 84$	$64^3 \times 112$
演算 (MFLOPS,%)	191~(79%)	191~(81%)	191~(80%)	192~(82%)
隣接 PU 間通信 (MB/s,%)	205~(18%)	214~(16%)	221~(17%)	227~(15%)
global sum $(\%)$	(3%)	(3%)	(3%)	(3%)
total (MFLOPS)	152	154	152	157

Wilson クォーク solver プログラム各部の PU あたりの性能と、実行時間に占める割合.

毎月何時間稼働したか

CP-PACSの成果

物理の成果

quenched QCD spectrum by CP-PACS (1997-1998) 1.8 baryons 3つの基本パラメータ \bigcirc mesons 1.6 (QCD結合定数, *mud*, *ms*) を調 oseudo-scalaı spin 0 Ω 整するだけで、ハドロン Ξ vector spin 1 1.4 スペクトルを10%の精度 μ Σ* で再現。 m_{had} [GeV] 1.2 Φ クエンチ近似は、10% Δ K*[−] の精度で正しい。 1.0 同時に、10%のずれの 9 韓 -0.8 存在も確立 octet decuplet spin 1/2spin 3/2 => クエンチ近似の限界 Κ Experiment 0.6 格子QCD誕生以来の懸 \bigcirc **CP-PACS K-input** -0-**CP-PACS** ϕ -input 案を解決。 0.4

物理の成果+

 クエンチ近似(重みの計算でクォークを無視・グルオンのみを取り入れた近似)
 Nf=2 フルQCD(u, d クォークの効果を正しく取り入れた計算)
 数百倍の計算量のため、当初はプロジェクトの目標に含まれていなかったが、理論的 進展を取り入れて、連続極限とカイラル外挿を行う世界初の系統的研究を実現。

▶ Nf=2+1 フルQCD (u, d, s クォークの効果を正しく取り入れた計算)

連続極限とカイラル外挿を行う最初の系統的研究

CP-PACSプロジェクトから学んだこと

CP-PACSの開発では、多くの要素が最適の形で組み合わさった

・タイミング

並列計算機の台頭 => 計算機側にも動機・メリット 科学研究大型予算(新プロ)の出現

・計算機の規模

1大学でやれる最大+の予算規模

<= 文部省と筑波大の強いサポート <= 岩崎さんの熱意と粘り強い交渉

・チーム

物理+計算機工学+メーカーの密接な連携 <= 筑波大・研究学園都市の学際連携環境 <= 明確な目標

● 成果と直結した具体的問題における 実効性能の追求

ありがとうございました。

クォークとグルオンから核力を直接導くことに、初めて成功。
湯川力とハードコアを再現。

Nature 2007 research highlights に、iPS細胞と並んで、世界的に インパクトを与えた代表的研究として選出された。

☞ 宇川(筑波大)ら (2010): He原子核が安定であることを、クォークと グルオンから初めて示す。

> これらの発展や、クォーク・グルオン・プラズマの大規模 シミュレーションを「京」で計画中。

