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Department of Mechanical Engineering,
Science University of Tokyo, Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various
Noda-shi, Chiba, 278-8510, Japan Reynolds numbers has been carried out to investigate the Reynolds number dependence.
The Reynolds number is set to be,R480, 395, and 640, where Rés the Reynolds
number based on the friction velocity and the channel half width. The computation has

Yuichi Matsuo been executed with the use of the finite difference method. Various turbulence statistics
National Aerospace Laboratory, such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms,
Chofu-shi, Tokyo, 182-8522, Japan two-point correlation coefficients, and energy spectra are obtained and discussed. The

present results are compared with the ones of the DNSs for the turbulent boundary layer
and the plane turbulent Poiseuille flow and the experiments for the channel flow. The
closure models are also tested using the present results for the dissipation rate of the
Reynolds normal stresses. In addition, the instantaneous flow field is visualized in order to
examine the Reynolds number dependence for the quasi-coherent structures such as the
vortices and streaks[DOI: 10.1115/1.1366680

Introduction lished a brief communication on their DNS for a slightly lower

With the aid of recent developments in the super and para”:%,iesynolds number of Re=590. Their results are also included in

. - - - paper for comparison.

computers,.the dlrec.t nqmerlca] simulatiBNS, hereaftor of Extensive effort has been devoted to the experimental study of
turbulence is now being increasingly performed. _the turbulent channel flow. Laufél2] first obtained the detailed

Th_e D.NS IS a tlme-depenc_ient and t_hree-dlmensmnal NUMETI¢dthulence statistics in the channel flow at three Reynolds num-
solution in Whl_ch thej governing equations are computed as aCkrs of Re=12,300, 30,800, and 61,600, where,Rethe Rey-
rately as possible without any turbulence models introduced. TRg|4s number based on the centerline veloaityand the channel
DNS provides various information, such as velocity, pressure, angf width. Later, Hussain and Reynolf3] reported the higher-
their derivatives at any time and point in the instantaneous floytger turbulence quantities with the use of an extremely long
field. _These are extremely difficult to be measured in experimenghannel for Rg=13,800-33,300. Kreplin and Eckelmanii4]
The first attempt of the DNS was made by Orszag and Patterspade their experiments with the hot-film measurement for low
[1] 25 years ago for a homogeneous turbulence. For the wglkynolds numbers of Re2800-4100. Johansson and Alfreds-
turbulence, the DNS of the fully developed turbulent channel flogon[15] carried out the experiment with the hot-film probes in a
started more recently. It was, however, more than 10 years agater channel for Re=6900- 24,450, focusing on the Reynolds-
when Kim et al.[2] (KMM87, hereaftey published their DNS on number effect. Wei and Willmartfil6] performed an experiment
the turbulent channel flow. Their Reynolds number based on théh the laser-Doppler anemometer in a water channel for Re
friction velocity u, and the channel half widtld was Re=180. =3000-40,000 to investigate the existence of an inner scaling
Since then, the DNS of the turbulent channel flow has often belw. Recently, Antonia et aJ17] made velocity measurement us-
performed because of its simple geometry and fundamental nating the X-wire for Re.=3300-21,500 and also carried out the
to understand the transport mechanism. Kuroda ef3l.and DNS for Rg=3300, and 7900. They examined the Reynolds num-
Kasagi et al[4] carried out the DNS for a slightly lower Reynoldsber dependence concentrating mainly on the inner region. Al-
number of Re=150. Kim et al.[5] (KMM90, hereaftey also per- though a large amount of knowledge was accumulated through the
formed a DNS with a higher Reynolds number of R895. An- experiments, there existed always some discrepancies among the
tonia and Kim[6] analyzed the DNS data by KMM8[2] and existing experimgntgl results, especially in the near-wall region.
KMM90 [5] and obtained various turbulence quantities in thilore recently, Nishino and Kasafl8,19 carried out the mea-
near-wall region. They found that the Reynolds-number effect Gyrement by the three-dimensional particle tracking velocimeter
the turbulence quantities was rather significant. However, it is ngiethod(PTV, hereafterat a low Reynolds number of Re205
known yet whether this non-negligible dependence on the RefR&=3755). They obtained a good agreement with the DNS of
nolds number could be extrapolated to a higher Reynolds numtigiM87 [2] including the near-wall region.
or not. The authors groufkawamura et al[7]; Kawamura et al. _ 1N the present work, the DNS of turbulent channel flow has
[8]) performed the DNS to include the scalar transport with VarEeen carried out w[th the use of the finite difference method. The
ous Prandtl numbers for Re180 and 395. They carried out the eynolds number is set to be Rel80, 395, and 640. For Re

: =180 and 395, the obtained results are compared with those of
DNS also for a higher Reynolds number of R&40 and reported ! .
preliminary results in Kawamurf9] and Kawamura et af10]. KMNS; e[llz]rn"’g;goz'v'g:%g];?hzrr]%vgntge,\;%:ﬁb;r']tg %‘;It.?]ecgﬁﬁzzm
Meanwhile the calculation was extended further; the present pa[géjtm y !

! ; ~'out a large eddy simulation for Re640 more than 10 years ago
reports the detailed results. Quite recently, Moser ef1d]} pub to compare the results with the experiment of Hussain and Rey-

Commibuted by the Fluids Endineering Division f biication in oA nolds [13]. The present computation is also executed for. Re
ontributed by the Fluids Engineering Division for publication in NAL ; ;

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 640 b,ased on that of K.awamura et E]'O]‘ which is, to_the
June 19, 2000; revised manuscript received February 16, 2001. Associate Edi@:‘r‘.thors knowledge, the highest Reynolds number ever simulated

G. Karniadakis. through DNS for this configuration. Various turbulence statistics
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Table 1 Spatial resolution

Re, 180 395 640
Computational volumex,y,z) 12.85X26%6.46 6.46X26X3.26 6.46X26X268
Computational volumex*,y*,z") 2304x360x1152 252&790x1264 4096<1280x1280
Grid number 256&128x256 256x192%x256 512x256X 256
Spatial resolution £x*,Az") 9.00, 4.50 9.88, 4.94 8.00, 5.00
Spatial resolution 4y ™) 0.20~5.90 0.20-9.64 0.15-8.02
Time integration {*) 4,320 15,800 24,800
such as turbulence intensities, vorticity fluctuations, Reynolds 3Ui+
stresses, their budget terms, two-point correlation coefficients, and — =0, (4)
energy spectra are examined to investigate the Reynolds-number X;
dependence in detail. and the Navier-Stokes equation:

Computational Domain oui ,ou  opt 1 dul  ap” 5 )
. ) ' =T T ha 2T % 9l -
The DNS must meet the following two requirements to ensure at* b oxf ax’  Re oxf®  oxp

the adequacy of the computation. One is that the computationgl . ; -
domain must be chosen to be large enough to contain the lar !
eddies. The other is that the grid spacing must be fine enoughy;
resolve the smallest eddies. The former is confirmed if the twgg),
point correlation becomes zero within a half of the computationg
domain. Recently, Jinmez[21] pointed out that the product of the
wave number and the one-dimensional spectrum serves also as
good measure of the computational domain. The latter can be uf=0, aty=0 and 2. (6)
satisfied if the one-dimensional energy spectra shows enough ) .

drop-offs for the high wave numbers. The present computation!n the present computation, fractional step method proposed by
takes into account the above requirements, although a ratk¥fkowics and Dvinsky22] is adopted for the computational al-
smaller volume is selected to save the computational storage. E@ithm. Time advancement is executed by the semi-implicit
flow is assumed to be fully developed in an infinite twoScheme: Crank-Nicolson method for the viscous teriwall-
dimensional channel. The mean flow isdirection and is driven Normal direction and Adams-Bashforth method for the other
by a streamwise mean pressure gradient. Notextkiaf), y (x,), (€rms. o o L

and z (x3) imply streamwise, wall-normal and spanwise direc- For spatial discretization, the finite difference metH&®M,
tions, respectively. The periodic boundary condition is imposed fiereaftey is adopted. In the preceding DNSs, the pseudo-spectral
x andz directions, while nonslip condition is adopted on the to’ethod (PSM, hereafter has been often preferred because a
and bottom walls. The uniform meshes are used inxtamdz higher-numerical accuracy can be obtained for a given grid size
directions. On the other hand, the nonuniform meshes are adopt@®@ugh PSM than through FDM. On the other hand, the FDM has

in the y direction. The transformation is similar to that of Moin@ Potential to be applied to more complex geometries and spatially
and Kim[20] as developing flow in future works; thus it is considered to be worth-

while to verify an applicability of the FDM to DNS in comparison
1 1 with existing PSM results. Several DNSs have been performed
yj=ztank[§j tanh = a]+0.5, (1) with the use of FDM by Rai and Moif23,24 for turbulent chan-
nel and boundary layer and by Gavrilak%5] for square duct.

1, 2, and 3 indicate the streamwise, wall-normal, and
nwise directions, respectively. The varialleend p are the

e and the pressure. The superscfiphdicates that the vari-
es are normalized b§. Note that the third term for the right-
nd side of Eq(5) is the streamwise mean pressure gradient.
'ghe boundary conditions are

with In the early stage of the present work, a series of computations,
j were made in which DNSs of the fully developed turbulent chan-

&= —1+2N—, (2) nel flow were performed with various discretization methods in-

2 cluding the upwind and the second- and fourth-order central

where « is an adjustable parameter of the transformation schemegKawamura[26]; Suzuki and Kawamurg27]).

<a<1) andN, is the grid number of thg direction. In the case of ~ As for the transport equation for the turbulent kinetic energy
Re,=180 and 395, a constant value @-0.967 and 0.980 are and the Reynolds stresses, the use of the upwind scheme showed
adopted, respectively. On the other hand, in the case qof Ra underestimation of the dissipation rate due to the numerical

=640, a function is employed for the parameter viscosity in the transportation of the turbulent kinetic energy and
) 3 the Reynolds stresses. Even in the computation with the use of the
a(§;)=0.9885- 0.5+ 0.40%7. ()  central scheme, the sum of the all terms in those transport equa-

The computational condition is shown in Table 1. Note that tHéons never tended to fall to zero. It was noticed that this was due

superscript+ indicates the quantities normalized by the wall varito the inconsistency between the numerical and analytical differ-

ables, e.g.y*=yu./» andt* =tu?/». For the highest Reynolds ential operations employed in solution of the momentum and
, e.g. , . ;

number of Re=640, the computation has been executed dh2nSPort equations.

33, 554, 432512256 256) grid points to resolve the smallest The obtained conclusions can be summarized as follows. The
eddies. transport equation of the Reynolds stresses is derived from the

momentum equation through a lot of differential operations using

. the continuity condition. In the calculation of DNS, the momen-
Numerical Procedures tum equation must be solved with a sufficient accuracy corre-
The coordinates and flow variables are normalized by the chasponding to the order of applied discretization. Thus, if ever a
nel half width 6, the kinematic viscosity, and the friction veloc- significant residual remains in the sum of the terms in the Rey-
ity u,=(z,/p)Y2 where 7, is the statistically averaged wall nolds stress transport equations, it is because the numerical differ-
shear stress anglis the density. entiation scheme is not consistent with the analytical one. The

The fundamental equations are the continuity equation: inconsistency was pointed out first by Schum#®&] more than
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Table 2 Mean flow variables T T T T T T —
-0.25
Re, Um Uc Uc /U Ren Re; Rey Cs ].0-2 oy N Cr = 0.073Rey,
180 1572 18.38 1.17 5662 3309 2953.11x 1073 I A N
395 17.70 20.48 1.16 13981 8090  754.39x 10 3 - PP
640 19.00 21.85 1.15 24326 13984 128%.50x 102 o T Cr = 0.079(2Rey,) ST
ST y
_ Dean (1978)
twenty years ago. The authors groigawamurg 26]; Suzuki and r L . I];D’lasmi friction law .
Kawamurd 27]) extended this idea to apply to DNS. The resultant A Kzﬁe:t al. (1987, 90)
scheme was called the “consistent scheme” because of its con-, _ 3 o Kuroda et al (1589)
sistency between the numerical and analytical difference opera-lo 0 ) A L,

tions. It was originally with the second-order accuracy. Some
more details are given in the Appendix. Later, Kajishif#8] and
Morinishi [30] extended it into the fourth-order one. The present
computation has been executed with the second-order scheme;
while the fourth-order scheme is also tested and compared in the
Appendix. As for the computational stencil, the staggered grid is ) ) ) )
adopted; that is, the pressure is located at the cell center and i them. However, there exists a small but discernible differ-
velocities at the cell surfaces. ence between the present and the KMM&T and KMM90 [5]
The Poisson equation of pressure is solved using the tridiagof@$ults. This is a reflection of the slight difference in the mean
matrix algorithm in the wall-normal direction and the fast Fouriey€locity distribution in the channel center region.
transform (FFT) in the streamwise and the spanwise directions The mean velocity distribution is given in Fig. 2 and compared
with the use of the second-order scheme. For the viscous terty§h the experiment of Hussain and Reyno[dS]. The DNS of
the Second_order Central Scheme is usedl turbulent channel flow by KMMS-[Z] and KMM90 [5] and the
The computer employed is NW{Numerical Wind Tunnello- ~ ©ne of the turbulent boundary layer by Spalg@l] are also in-
cated at the National Aerospace Laboratory. It is a vectoriz&#ded for comparison. The present result for-R@40 is in good
parallel computer with 166 processor elements, connected throiggfeement with the experiment by Hussain and Reynfla§
the cross bar network of 421 MB/s. The computation speed While a slight deviation from Rg=1410 by Spalarf31] is found
each processor is 1.7 GFLOPS, thus the theoretical maximuirthe logarithmic region. This is due to a characteristic difference
performance of the whole system is 280 GFLOPS. In case of tRgtween the channel and the boundary layer flows.
highest Reynolds number of Re640, the computation has been KMMB87 [2] pointed out that the logarithmic region exists even
made using Of 64 processors with the typ|Ca| integration Ume 6? the case Of the |0West Reynolds number Of 180, Whlle it extends
about 1.4 s for a time step. The calculation has been executeduipto a largery* with the increase of Re Moreover, the wake

to 24’800,,/@ in order to obtain a stable statistical average. egion is more clgarly distinguished from the logarithmic one in
the case of the higher Re

It is well-recognized that the logarithmic region can be ex-
pressed as

Mean Flow Variables. Mean flow variables such as the bulk
mean velocity,,,, the mean centerline velocity. , the Reynolds
numbers Rg, Re., and Rg and the friction coefficienC; are
given in Table 2 for the three Reynolds numbers. Herg, R¢he

10* Rey,

Fig. 1 Friction coefficient

Results and Discussion

_ 1
u+:;Iny++c, (10)

. wherex is the von Karman constant acds the additive constant.
Reynolds number based on the bulk mean velocity and the ch Ste that an overline denotes an average over andt. In the
gﬁ:jv?k?éhc?]g%r?eslnigl}evagtehbﬁcii ?E;Pe.renizgggrgﬁr{w: %e;gﬁ' Yirbulent boundary layer, Spald@&1] indicated that the result for
; X ) e the higher Reynolds number of Rel410 gavex=0.41 andc
centerline velocity and the momentum thickness. In the presegg 0. In the case of Re-180, the additive constant is 5.5
case, the momentum thicknegss defined as T y o

which is in good agreement with that of KMM8&2]; while in the
6 (tu’
5 f ol

case of Re=640, the one by the present DNS decreases down to

5.2.
The von Karman constant can be obtained from Eq10) as

In the case of Re=640, Rg is about 10 percent lower than that of

the DNS with Rg=1410 by Spalarf31] for the turbulent bound-

ary layer; while,u. for Re.=640 is roughly equivalent ta,, for T T T

Re,=1410 by Spalarf31], whereu., is the edge velocity. The

present results also agree with the correlation between the bulk

mean velocity and the mean centerline velocity proposed by Dean

[32]:

U—%—
1—U—+)dy*

C

@)

Ue/upm=1.28 Rg, %0116, (8) +
|= ut y+ -
The friction coefficient is defined as L = . |
10 S ——  Re, = 640
1, g -—- Re =39%
Ci=mw/|5pUn|, 9) -- Re, =180 |

where 7,, is the wall shear stress. Figure 1 shows the friction

coefficient in comparison with those of DNS by Kuroda et[al. 0

and KMMB87 [2]. There included are the empirical correlation
proposed by Deaf32] for the channel flow and the one by Bla-
sius for the pipe flow. The present results are in good agreement
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and is plotted in Fig. 3. It is well-known that obtained from the
experiments ranges from 0.40-0.42. The present calculation ind 21
cates thatx is not completely constant but it stays at a roughly+ s
constant value of 0.40 arouryd = 50— 100. Moreover, the region “B

of the approximate constant tends to expand with the increase ¢ (.5 F
the Reynolds number.

PR IS TR

e |

Turbulence Intensities. The root mean square of velocity 0 . 1 . 1 . 1
fluctuations is shown in Fig. 4. Those of Moser et[all] andu;,, 0 200 4 +
of Hussain and Reynold4 3] are also plotted for comparison. All 00 y 600
components increase with the increase of .Rentonia et al[17]
indicated that the Reynolds number dependencemgy, is sig-

nificant compared to that far, - andv,. In the present results,

not only w/ but alsov /i is enhanced with increasing Reynolds
number. Especially, the wall-normal and spanwise componentgl2. On the other hand, the position of the peak moves closer to
are enhanced. This is because the energy redistribution increaseswall with the increase of the Reynolds number if scaled by the
remarkably forv/ s and w/q with the increase of the Reynoldschannel half widths.
number, as will be discussed later. In Fig. 4, the present resultThe total shear stress is an identification that the calculation
shows good agreement with the measurement by Hussain &@#ches a.statlistically steady state. When the streamwise momen-
Reynoldg 13] for u;.\. except for the peak value. This discrepancjm equation is ensemble averaged, the total shear stress can be
may also be caused by the difficulty in the measurement close@Btained as
the wall. The slight difference between the present &%50) y Ju
and Moser et al[11] (Re,=590) is due to the difference in Re Toa=1— 5==—U""v' "+ —.
If they are plotted versug/é instead ofy™, the agreement is Re, %
improved for the central region. In addition, the present results f@nce the statistically steady state is reached, the right and left-
Re, =180 and 395 agree with those of Moser et[all].

The root mean square of vorticity fluctuations normalized by

the wall variables, i.e o/ V/uf are shown in Fig. 5. The near-wall

Fig. 4 Rms of velocity fluctuations

ot

12)

values of streamwise and spanwise vorticity fluctuatieh$ and 0.5 T T T i
w,” increase with the increase of the Reynolds number. Esg L + .
cially, ;" shows a larger value for a higher Reynolds numbe () 4 L B - gir = ggg 4
This is caused by the simple shear close to the wall. The wi | SRS N Y _ 180
values ofw, ™ andw,* correspond to the coefficients andb,, g h

respectively, given in Table 3. The wall-normal vorticity fluctua+ =0.3 7]

tion a))’,+ , however, tends to become independent of the Reynol "z r
number in the near-wall region as reported by Antonia ar = (.2
Kim [6].

Reynolds Shear Stress. The Reynolds shear stressu’ v’ 0.1 .+ . n
and the total shear stresg,, are shown in Fig. 6. As the Rey- L o, [y .
nolds number increases, the peak value of the Reynolds sh oL |
stress—u’ v’ increases and its position moves away from th 10-1 100 101 102 y+ 103
wall. When Re is 180, the peak of-u’'*v’'" reaches 0.71 at
y*=30; while, in the case of Re640, it becomes 0.87 at* Fig. 5 Rms of vorticity fluctuations
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boundary layer flows. This correspondsitp=0.40 in the present
definition. Komminaho et al[34] computed the plane turbulent
Couette flow at a Reynolds number of 750 based on half the
velocity difference between the walls and half the channel width.
They indicated a value db;=0.41 at the wall. This is in good
accordance with the present valuelgf=0.409 for Re=640. In

the case of the Couette flow, the total shear stress is constant
independent upon the Reynolds number. This is equivalent to the
Poiseuille flow with an infinite Re(see Eq(12)). These indicate
that the decrease ly, with decreasing Refound in Table 3 is due

to the reduction of the total shear stress for the smalleriiRéhe

wall vicinity.

Two-Point Correlations. Streamwise and spanwise two-

0 200 400 y* 600

point correlations of velocity fluctuationR;;y for Re,=640 are
shown in Fig. 7. No summation rule is applied to the parenthe-
sized indices. In the near-wall region, all of the three components
tend to fall off to almost zero within a half width of the compu-
tational domain for both the streamwise and spanwise directions.
] Moving away from the wall, however, the spanwise two-point
hand sides of Eq(12) must be balanced. In the present DNS, thgorrelationR;; gives a small but noticeable deviation from zero
statistically steady state can be confirmed for all the three Reygen at the half of the spanwise computational domain. This
nolds numbers, as seen in Fig. 6. means that there exist the large scale structures in the center of the
channel and that the present computational domain is not enough
large to capture some of the largest scale ones. Recentlyndime
[21] investigated the large scale structures in the center of the

Fig. 6 Reynolds shear stress and total shear stress

distributions

Near-Wall Behavior. In the wall vicinity, the velocity fluc-
tuations can be expanded in termsydf as

u' T =by ey i, (13) channel and indicated that even the computational domain
e +2 ... adopted by Moser et dl11] is too short to contain the large scale
v Coy -, (14) .
ones. The large scale structures were also found by Komminaho
W' t=bgy ey 34, (15) et al.[34] in the Couette flow. They observed streamwise struc-

tures of the order of 48in the center of the channel. The above
large structures will be investigated with the use of the energy
spectra and be discussed later.

The spanwise two-point correlatidy; is given in Fig. 8 and
compared with the experiment by Nishino and Kadddi. It is
interesting to note that the near-wall negative peak of the span-

Considering the expansion of Eq4.3) and (14), the Reynolds
shear stress can be expanded in termg‘ofis

r+o o+

—u v *_b102y+3+"‘. (16)

The wall-values ofb,, c,, bs, andb;c, are extrapolated up to
the wall and given in Table 3 in comparison with Antonia an

) . . ise R;; becomes less prominent with the increase of Réis is
K!m (6]- T he present results agree W.e” with those of Antonia anfl accordance with the observation that the streamwise streaks are
Kim [6] in the near-wall region. A discrepancy can be observe

for b,c,. This seems to be caused by the location of the first grlC ustered in higher Reynolds number as discussed later.

point and the staggered arrangement of the variables in this workEnergy Spectra. One-dimensional energy spectra of velocity

In addition, the present results indicate that the coefficients of fluctuationsE;;, in the near-wall region for Re=640 compared

Cp, bs, andb,c; increase with the increase of the Reynolds numith that for Re=180 are shown in Fig. 9, wheilg, andk, are

ber. This is because the pl’OdUCtiOﬂ rate of the turbulent klnetﬁe wave numbers in the streamwise and Spanwise directions’ re-

energy increases with the increasing Reynolds number as digectively. Note thaE;, is normalized by the wall units. The

cussed later. Especially, the increase is significant when the R%}’Tergy spectra show acceptable drop-offs in the streamwise and

nolds number goes up from Rel80-395. In the case of Re spanwise directions irrespective of the Reynolds number, although

=640, however, the increase is rather saturated. This indicalggjight pile-up is seen for the highest wave numbers in the span-

that the low Reynolds-number effect is significant for,R&80. \ise direction. A large difference among three components is ob-
As for the wall-limiting value ob, or w; , a great deal of effort seryed in the lower wave number region for both the streamwise

have been devoted to reaching a consensus through the DNS gad spanwise directions. Especially, the difference is significant

experiment. However, there exists long discussion on the quaniigy the spanwise energy spectra. This indicates that the turbulence

because of the experimental difficulties associated with the megycture for the near-wall region becomes more anisotropic in

surements. Recently_, AIfreds:son_and Johans{%c}_ carried out space than the one for the channel center. More@grandE,,,

the measurements in the air, oil, and water with the hot-filgyipit noticeable increase in the lower wave number with in-

probes and specially designed sensors. They indicated that the ims, i Reynolds number for both the streamwise and spanwise
of the velocity shear stress fluctuation in the streamwise dlrectlan

is 40 percent of the mean-shear stress for both the channel and HSC“TS‘ which is in good accordance with the increase/{f

ndw.
To investigate whether or not the smallest eddies are resolved,
Fig. 10 showskE,(£%/v) ~** referring to Saddoughi and Veer-

Table 3 Near-wall expansion coefficient : .
avalli [35], which represents the energy spectra of the turbulence

Re. b, Cy bs b;c, dissipation rate. In the present result, its peak value occurs at
180 (Present 0361 94x 103 0199 79x 10 ky/kq=0.1-0.2 and falls off_forkxlkd> 0.5 roughly irrespective
180 (Antonia and Kim[6])  0.356 8:5>< 102 0.190 7:0>< 104 of the Reynolds number._Thls_co_rresponds to the well-known fact
395 (Present 0395 11x 10-2 0247 10x 103 thatthe small scale eddies dissipate the energy at a lower wave
395 (Antonia and Kim[6]) 0.395 1.1x 10-2 0.245 g95x 10-¢ humber than the Kolmogorov scal€ennekes and Lumle}B6]).
640 (Present 0.409 12x 102 0261 11x 102 Although, overk,/ky=0.2, some difference is found between the

386 / Vol. 123, JUNE 2001

present result and that by PSMWloser et al.[11]), those higher
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g (a) y =538 ] & —— Re,=640 RETI
M ] ] ——— Re, =395 i
0.5 ¢ R, Ly Re, = 180 |
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L . ]
1 ' 1 ' T [ . 1 . ! . ]
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N ) y'=325.8 1 0 100 200 =zt
0.5 K — R,, . . . . . .
’\° I N R,, i Fig. 8 Spanwise two-point correlation coefficient Ry at y
55.’ - t“ _____ RWW ] =11
S | S — :
N ] nez [21]. On the other hand, that dé,E,,/u’u’ stays at\,
0.5 - . | . |7 =1000. This means that the spanwise structure is enlarged with
“J. + the increase of *. In the present computation for Re640, the
0 1000 x' 2000 peak ofk,E,,/u’"u’* cannot be obtained at the center of the
1 T T T T T T channel. This indicates that the largest scale has not been captured
(c) +_5 38 totally at the central region of the channel for R€40. The
o y : ] present authors are now performing another computation with an
0.5 [ — R, o extended domain for streamwise and spanwise directions. The
~ 1 R, ] preliminary results indicate that its effect on the fundamental tur-
o) j‘ ----- R,, 1 bulent statistics is sufficiently small.
Sy -
0 L T . Budget of Reynolds Stressu/u/ and Turbulent Kinetic
C . Energy k. Budget terms of Reynolds stresu; normalized by
-05¢L . { L L . t viu? are expressed as follows:
au; au; "
1 R ' ' ' J ' ] Production: Pjj=—| u/ Tug —+u/ Tup T,
N () y =325.8 ] P o
F N ] 17)
0-5 — \\ Ruu ] J —
~ [ ~x T R,, ] Turbulent diffusion: Tjj=——(u/"u/"u"), (18)
-\.’:- N \\ ..... RWW ] J (gxk |
m 0 L \\\‘ ] 0pr+ ﬂpr+
- . _ r+ ’+
- ] Vel. p. -grad. corr.. IIj;= (uj _é)xi+ +U; ‘?XJ'+ )
-0.5 L . ] ) 1 ) 1 (19)
0 200 400 z' 600 fus s
z Molecular diffusion: D”:W(ui’ u'®), (20)
k
Fig. 7 Two-point correlation coefficients of velocity fluctua-
tions for Re ,=640: (a), (b) streamwise, (c), (d) spanwise corre- o o’»ui’+ auj”'
lation coefficients Dissipation: &;;=2 o (21)
K K

Figure 12 shows the budget terms of the Reynolds stresses for
wave numbers are less effective for the turbulence statistics. TH€,=640 compared with those of Re180 and 395. Fou”'u’+
means that the present spatial resolution is sufficiently small g@@mponent, as the Reynolds number becomes higher, the peak
resolve the energy dissipative eddies. value of the production and the wall values of the molecular dif-

To show the validity of the adopted computational domairfusion and dissipation increase. The production almost balances
Figs. 11a) and 11b) show the premultiplied energy spectrawith the some of the dissipation and the velocity pressure-gradient
kE,,/u'U’” andk,E,,/u’'u’, respectively, referring to Jimez correlation(v.p.g, hereaftgrterms. On the other hand, for v’ *

[21]. In the near-wall region, the peak &fE,,/u’u’ occurs at and w’“w’" components, the v.p.g and dissipation terms are

\; =100 independent of the Reynolds number, which agrees wileminant and increase significantly with the increase of the Rey-
the well-known average spacing of the streamwise streak stri@lds number. These indicate that the Reynolds-number effect on
tures. On the other hand, that ¢6E,,/u’u’ arises at\} v/ v’ andw’*w’* components is more enhanced than that of

=1000. These correspond to the formation of the streaks @s™u’'™.

shown later(see Figs. 16 and 17 Budget terms of turbulent kinetic energi(=(u’*u’"

In the center of the channel, however, the peak &,,/u’u’  +v’' v’ " +w’ "w’ ")/2) normalized by/u? are given in Fig. 13
moves toward a largex; ; i.e., \; =1000 as indicated by Jime for the three Reynolds numbers calculated. Note that the v.p.g
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Fig. 9 One-dimensional energy spectra of velocity fluctuations for Re

with Re ,=180: (a) streamwise, (b) spanwise

=640 in comparison

term is reduced to the pressure diffusion one due to the continuityis well-known that the pressure strain term plays a dominant
condition. Figure 13 indicates that all terms gradually increasele on the energy redistribution. Figure 12 indicates that all the
with the increase of Re Especially, the wall values of the dissi-components for the pressure strain term exhibit a prominent in-
pation and molecular diffusion increase appreciably with the icrease with increasing Reynolds number. It is interesting to note
creasing Reynolds number. The peak value of the production tefRat the increase in the pressure strainudfu’® from Re

Py maxb€comes 0.25 as the Reynolds number goes to the infinity.
In the present resultsPy na.« is 0.218 for Re=180; while, it
reaches 0.239 for Re640. The increase Py . from Re

=180 to 640 is small but significant. This point will be discusse 1
later together with the pressure strain term. I
The v.p.g term can be split into the pressure strain and tl
pressure diffusion terms as follows: 0.8
=
aul"  ul*t R 0.6
H~=p’+ J+ + - ~
Y ox; 3xj 3
- K 0.4
Pressure strain «N
d d 0.2
N !+ r++ _ f+ 1+ . .
(ﬁxi+ “j P 3xj+ “i P ) (22)
Pressure diffusion 0
0.4 — 0.6
I y/8=1 I 0.5
NG - :
NIUGH VS —— Re, = 640 1k
~ I -== Re, =395 204
{ ------ Re; = 180 1 IR
n> (0.2 --— Moser et al. (1999)] ™~ 0.3
Klhe 303+
S 1 Soal
= -
~,, 0.1 4 =
& [
| 0.1 -
0 b — 0 I
0 0.2 0.4 0.6 0.8 1
kq
Fig. 10 Streamwise one-dimensional energy dissipation spec- Fig. 11 Premultiplied energy spectra for Re =640 (a)

tra normalized by Kolmogorov scale
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0 Residual o :u(i) u(i} (23)
'”_A___,..-;—_'_'_'_" (”) 2k
050-02 == The present results are compared with the above approximation in
8 Dissipation Fig. 14. The agreement is generally good for all the normal com-
—0.04 . i ponents. If examined more precisely, however, the agreement is
.Presslure stlram | . | ' | ‘ less satisfactory in the central regionief 1 and 2 and also in the
I near-wall region ofi=2. In the near-wall region, referring to
20 40 (b) 60 y 80 100  Launder and ReynoldE38], the relation of Eq.(23) is exactly
. valid fori=1 and 3; while, foii =2, the wall asymptotic value of
' T T &,, becomes
% 0.1 Molecular diffusion _ €99 4C§y+2, (24)
U Vel. -p. grad. corr. . . .. .
(Pressure strain) wherec, is the expansion coefficient in E¢L4). The above rela-
..................... tion is shown in Fig. 14 with a dashed straight line; the agreement
---------------- is good in the close vicinity of the wall. The above Hg4) is
equivalent to
822:4 2K 28, (25)
| | instead of Eq(23). This is one reason why the agreement of Eq.
L L L [ ' 1 '

40

(¢)

60 yt80 100

Fig. 12 Budget of Reynolds normal stresses:  (a) u'Tu’'™", (b)

V,+V,+, (C) WI+WV+7

=180

=180-640 is about 0.02 around its peak. This value is rough

, Re,=640; — — —, Re,=395; - - -, Re,

(23) is not so good foi =2 as seen in Fig. 14.

To examine the above approximation further, the anisotropy
tensors are defined for the Reynolds stress and its dissipation rate
as follows:

10° —— . .

10! !

equal to the increase in the peakRf. SinceP, is a half of the
P11, it means that about half of the increase in the production ra

~—rt

of u'*u’'" is consumed by’ fu’'" itself and the rest half is w
transferred to the other components. This is the reasonwfy
and o/ increase significantly with the increase of the Reynold
number.

Dissipation Rate of the Reynolds Stresses.The dissipation
rate of the Reynolds stresses is the quantity obtained best frc
DNS. The anisotropy of the dissipation rate for the normal Rey
nolds stress components is of a great concern in the modeling of

1072

-3

10° 10° 102 y

turbulence. Mansour et al.37] examined the DNS data of Fig. 14 Dissipation rate of the normal Reynolds stresses for
KMMB87 [2] for Re,=180 and found that the following expressionRe, =640 symbol, ¢, by Eq. (23);, ——, u(ju(;(elk);
is a good approximation except for the off-diagonal components:—-—- — (23)g; — — —, 4ciy*?
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Fig. 15 Relation between anisotropy tensors ~ b; and d;;

uir +ujr + 6”
b=k 3 (26)
B ﬁ (27)
b2 3° Fig. 16 High- and low-speed streaks and the second invariant

. . - of the deformation tensor for Re ,=180 (u’'*<—3.0; light-gray,
Antonia et al[39] compared the relation betwebpy andd;; for a H,+>3'0; dark-gray, 1I'*<—0.03: white )

turbulent boundary layer. The same kind of comparison is made

here for the turbulent channel flow in Fig. 15. For the above

approximation of Eq.(23) to be exactly valid, the equalitg; . i . .

=bj; must hold. The arrows in Fig. 15 indicate the direction frontIh,e Iow-speed streaks. Other vortices |nclud|ng'the single stream-

the wall to the channel center. The starting pdimall value lies WiSe vortices are also associated closely with the low-speed

on the line ofd;j=b;;; especiallyb;j=d;;=—1/3 fori=j=2. streaks. , _

The relation ofd;; =by; holds roughly for the whole region. It is, As for’the streaks, high- and low-speed streaks are obtained for

however, interesting to note they;, becomes parallel to the hori- POth R€’s. The low-speed streaks are more elongated than the

zontal axis where the absolute valuetpf is small. This means hlgh-speed ones _for both of_the Reynolds numbers obser_ved. The

that the dissipation becomes nearly isotropic irrespective of tRBanwise two-point correlatioR,, is generally used to estimate

Reynolds stress anisotropy in the central region. This supports th8 Spacing of the streaks. It is known that the position of the

well-known belief that the dissipation must be almost isotropig€dative peak oR;, provides an estimation of the mean separa-

because it takes place in the microscale, which is more isotrofign between the high- and low-speed streaks; that is, the streak

than the large scale eddies. The isotropic expression spacing become_s twice of_ t_he distance to the negative peak.
) KMM87 [2] obtained the minimum value d®,; at z"=50 and

§8
is plotted with the dot-dashed line in Fig. 14. This is indeed in a
better agreement than E@3) in the central region.

(28)

&~

Instantaneous Flow Field. A lot of knowledge has been ac-
cumulated for the turbulent structures through the experimental
observation and the analysis of the DNS data. In the present study
we focus mainly on the Reynolds number dependence for the
guasi-coherent structures such as vortices and streaks. Figures :
and 17 show the high- and low-speed streaks and the second ir
variant of the deformation tenson|( =duj/dx;- duj/dx;) for
Re,=180 and 640. The visualized domain is set in wall units to be
1152x180x576 for Re=180 and 204&640x640 for Re=640
in X, y andz directions, respectively. Note that fluid flows from the
bottom left to the top right.

Chong et al[40] proposed the identification of the vortex re-
gion which exhibits the circular or spiral motion with using the
second invariant of the deformation tensor. The low pressure re-
gion (p’ ") does not necessarily correspond to the vortex core as
indicated by Kim[41] and Robinsor{42]. Thus, the second in- '
variant of the deformation tensor is adopted to detect the vortex
structure in the present research. When the Reynolds number i
low as Re=180, the well-known vortex structures such as single
guasi-streamwise vortices are dominant. On the other hand, as the
Reynolds number increases up to,R640, many different vorti- Fig. 17 High- and low-speed streaks and the second invariant
cal structures such as the vortical arches are found besides dhene deformation tensor for Re ,=640 (u’'t<—3.0; light-gray,
single streamwise vortices. The vortical arches are rolled up ower>3.0; dark-gray, /I'*<—0.03; white )
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indicated that the streak spacing was" =100, with which the NWT. The authors are grateful to Dr. K. Yamamoto of the Na-
present DNS for Re=180 gives a good agreement as shown itional Aerospace Laboratory for his great help in the early stage of
Fig. 16. Comparison of Figs. 16 and 17 indicates that the sepaihis computation and to Dr. S. Satake of Toyama University for

tion of the high- and low-speed streaks is more prominent in ths helpful comments throughout this work.

lower Reynolds number and less in the higher one. That is, in case
of Re,=640, the shape of the streaks becomes more complica\)\id
and the several streaks are clustered with each other. Moreo

several low-speed streaks are often lifted up from the wall andp, | ¢, , d

finally broken up(see Fig. 17. This observation is in agreement b;
with the finding that the local minimum of thR;; becomes less Cq
prominent with the increase of the Reynolds number as seen in c
Fig. 8. d;;
Conclusions ‘

The direct numerical simulation of a fully developed turbulent ||
channel flow has been carried out. The Reynolds number is setto '~
be Re=180, 395, and 640. The computation has been executed Kq
with the use of the finite difference method. Various turbulence p
statistics, such as turbulence intensities, vorticity fluctuations, Py
Reynolds stresses, their budget terms, two-point correlation coef- R
ficients and energy spectra, were obtained to investigate the Rey- !
nolds number dependence. The conclusions are derived as Re.
follows: Re,

1 With the increase of Re the increase in the wall-normal Re&
(v)md and spanwisew(, ) components is more enhanced than Rez
that of the streamwise one /(). About half of the increase in the U Uow
production rate o’ Tu’" is consumed by’ Tu’T and the rest '
half is transferred to the other components. UZ

2 The near-wall expansion coefficients increase significantly as Up,
the Reynolds number goes up from R&80-395, but become U,
rather saturated for Re640. The wall-limiting value ob, ob- Xy, X
tained as 0.409 agrees with the experiment for the channel flow by Xy, Y
Alfredsson and Johanss(a3] and the DNS for the Couette flow X3, Z
by Komminaho et al[34].

3 The examination of the spanwise two-point correlation coef"€€K
ficient Ry, reveals that the negative peak Bf; becomes less )
prominent with the increase of the Reynolds number. This agrees &ij
with the more complex streak shapes observed in the instanta- €
neous velocity field for the higher Reynolds number. €ii

4 The dissipation energy speckzE, ,(£3/v) ¥4 in the center K
of the channel exhibits a peak valuekat ky=0.1-0.2 and falls 0
off for k,/ky>0.5 irrespective of the Reynolds numbers calcu- v
lated as indicated by the local isotropic thedifennekes and i
Lumley [36]). p

5 The anisotropy of the dissipation rate for the Reynolds nor- Ay, A,
mal stresses is compared with closure models. The anisotropy is
pronounced in the wall vicinity; while the well-known isotropic Tw
nature is confirmed in the central region for a higher Reynolds Ttotal

number.

6 The second invariant of the deformation tensor represents the
vortices such as the single streamwise vortices and the vortical
arches for Re=640. In addition, different vortical structures are
captured with the increase of the Reynolds number. As for the
streaks, rather simple and separated streaky structures are ob- ()
served for the lower Reynolds number of Rel80; while, the )ims
shape of the streaks becomes more complicated and several ( )max
streaks are clustered with each other for the higher Reynolds num-

ber of Re=640. .
Appendix
The present database is open to public access. The detailed

()
)+
()

pmenclature

coefficient of series expansion

anisotropy tensor of Reynolds stress

friction coefficient

additive constant of the logarithmic law
anisotropy tensor of dissipation rate
one-dimensional energy spectra of velocity fluc-
tuations

turbulent kinetic energy

wave number for streamwise and spanwise di-
rection

Kolmogorov wave number

pressure

production rate for the turbulent kinetic energy
two-point correlation coefficient of velocity
fluctuations

Reynolds numbetu .6/ v

Reynolds numbetu,,256/v

Reynolds numberu 8/ v

Reynolds numberu.6/v

time

velocity component

friction velocity= /7, 7p

mean centerline velocity

bulk mean velocity

edge velocity of the turbulent boundary layer
streamwise direction

wall-normal direction

spanwise direction

channel half width

Kroneker symbol

dissipation rate of turbulent kinetic energy
dissipation rate of Reynolds stress

von Karman constant

momentum thickness

kinematic viscosity

vorticity component

density

wavelength for streamwise and spanwise direc-
tion

statistically averaged wall shear stress
statistically averaged total shear stress

Superscripts and Subscripts

normalized bys

normalized byu,, v andp
fluctuationcomponent

statistically averaged ovex, z, andt
root mean square

maximum value

information is given at http://muraibm.me.noda.sut.ac.jp/e- A- Consistent Scheme. The convection terms fou; can be

pagel.html.

expressed in either advective (agw;du;/dx;) or divergence

(div.=dlaxuu;) forms. Since

Acknowledgments
This simulation was performed with the use of the Numerical

3 au;
— UjU;i=U— +U;
ax; ' Thox; :

au; 29
e (29)

Wind Tunnel(NWT) of the National Aerospace Laboratory. Wethe advective and divergence forms are analytically equal if the
would like to acknowledge the execution of the computation ocontinuity condition is satisfied. Thus, this equality must be satis-

Journal of Fluids Engineering JUNE 2001, Vol. 123 / 391



L B L L R LA 3 . : . ] i |
Re, = 640 —

20 + : wt Re, = 640 |
— d4th-order “3 e 4th-order
=~~~ 2nd-order l . 2 2th-order

I K
10 — 2
>“ 1 y §
| E V' rms = -
+" |
0 R R MR B R 50 . ] . L . 1
10° 10! 102 y* 0 200 400 y*t 600
Fig. 19 Rms of velocity fluctuations by fourth-order
Fig. 18 Mean velocity distribution by fourth-order calculation calculation

103 L L) B L) B L LA 103 L L) LS RALL B R LA

0 Re, = 640 . Re_ = 640

10 L yt=5.38 10° - y+t=5.38 7

10t - 10" | -

10° | - 10° -

ﬁ;@m'l - . ;5210'1 - .

102 1 4 102 | -

10° F - 10° L
10 F - 104 1 -
E, E,, E,, By B By
5 4th-order B 5 4th-order T
107 |- znd-order —— ---- - - 10° \ zd-order — ---- - -
100 bt b R 100 Lt bt
10%  10? @ 10" &7 10° 10% 107 ) 10 k,” 10°
a

Fig. 20 One-dimensional energy spectra of velocity fluctuations by fourth-order calculation:

(a) streamwise, (b) spanwise

fied in the numerical discretized scheme, too. This is the consis-

tency between the analytical and numerical differential operations.
In the present computational stencil, the staggered grid is

adopted; that is, the pressure is located at the cell center and the

velocities at the cell surfaces.

The following difference operation is defined referring to

Morinishi [30]

—X

py =

1

2 d(X1+hq/2, X5, X3) (X1 —h1/2, X5, X3)

1
+ Eap(xﬁ h{/2, X5, X3) p(X1—h1/2, X5, X3). (32)

The present numerical discretization is based on the second

56 B HN112, Xy, Xg)— (X —hyl2, X, Xa) accuracy(Kawamura[26]; Suzuki and Kawamur§27]) and de-

= ., (30) fined as follows.

OXy hy The discretized continuity equation can be expressed as
where¢ is a variable in the; direction. Interpolation operator is (Cont)= % 0. (33)
given as OX;

For the convective terms, the advective and divergence forms are
- 1 discretized as
¢ = §(¢(X1+h1/27 Xz, X3)+ d(X1—h1/2, X5, X3)). (31) .
T
. . . (Adv.)i=T;"— , (34)
Moreover, a special interpolation of the variables betweéemd 6%

¢ in the x4 direction is expressed as and
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