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Direct Numerical Simulation
of a Fully Developed Turbulent
Channel Flow With Respect to the
Reynolds Number Dependence
Direct numerical simulation (DNS) of a fully developed turbulent channel flow for vari
Reynolds numbers has been carried out to investigate the Reynolds number depen
The Reynolds number is set to be Ret5180, 395, and 640, where Ret is the Reynolds
number based on the friction velocity and the channel half width. The computation
been executed with the use of the finite difference method. Various turbulence sta
such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget
two-point correlation coefficients, and energy spectra are obtained and discussed
present results are compared with the ones of the DNSs for the turbulent boundary
and the plane turbulent Poiseuille flow and the experiments for the channel flow.
closure models are also tested using the present results for the dissipation rate o
Reynolds normal stresses. In addition, the instantaneous flow field is visualized in or
examine the Reynolds number dependence for the quasi-coherent structures such
vortices and streaks.@DOI: 10.1115/1.1366680#
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Introduction
With the aid of recent developments in the super and para

computers, the direct numerical simulation~DNS, hereafter! of
turbulence is now being increasingly performed.

The DNS is a time-dependent and three-dimensional nume
solution in which the governing equations are computed as a
rately as possible without any turbulence models introduced.
DNS provides various information, such as velocity, pressure,
their derivatives at any time and point in the instantaneous fl
field. These are extremely difficult to be measured in experime
The first attempt of the DNS was made by Orszag and Patte
@1# 25 years ago for a homogeneous turbulence. For the
turbulence, the DNS of the fully developed turbulent channel fl
started more recently. It was, however, more than 10 years
when Kim et al.@2# ~KMM87, hereafter! published their DNS on
the turbulent channel flow. Their Reynolds number based on
friction velocity ut and the channel half widthd was Ret5180.
Since then, the DNS of the turbulent channel flow has often b
performed because of its simple geometry and fundamental na
to understand the transport mechanism. Kuroda et al.@3# and
Kasagi et al.@4# carried out the DNS for a slightly lower Reynold
number of Ret5150. Kim et al.@5# ~KMM90, hereafter! also per-
formed a DNS with a higher Reynolds number of Ret5395. An-
tonia and Kim@6# analyzed the DNS data by KMM87@2# and
KMM90 @5# and obtained various turbulence quantities in t
near-wall region. They found that the Reynolds-number effect
the turbulence quantities was rather significant. However, it is
known yet whether this non-negligible dependence on the R
nolds number could be extrapolated to a higher Reynolds num
or not. The authors group~Kawamura et al.@7#; Kawamura et al.
@8#! performed the DNS to include the scalar transport with va
ous Prandtl numbers for Ret5180 and 395. They carried out th
DNS also for a higher Reynolds number of Ret5640 and reported
preliminary results in Kawamura@9# and Kawamura et al.@10#.
Meanwhile the calculation was extended further; the present p
reports the detailed results. Quite recently, Moser et al.@11# pub-

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Divisio
June 19, 2000; revised manuscript received February 16, 2001. Associate E
G. Karniadakis.
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lished a brief communication on their DNS for a slightly low
Reynolds number of Ret5590. Their results are also included i
this paper for comparison.

Extensive effort has been devoted to the experimental stud
the turbulent channel flow. Laufer@12# first obtained the detailed
turbulence statistics in the channel flow at three Reynolds n
bers of Rec512,300, 30,800, and 61,600, where Rec is the Rey-
nolds number based on the centerline velocityuc and the channel
half width. Later, Hussain and Reynolds@13# reported the higher-
order turbulence quantities with the use of an extremely lo
channel for Rec513,800233,300. Kreplin and Eckelmann@14#
made their experiments with the hot-film measurement for l
Reynolds numbers of Rec5280024100. Johansson and Alfreds
son @15# carried out the experiment with the hot-film probes in
water channel for Rec56900224,450, focusing on the Reynolds
number effect. Wei and Willmarth@16# performed an experimen
with the laser-Doppler anemometer in a water channel forc
53000240,000 to investigate the existence of an inner scal
law. Recently, Antonia et al.@17# made velocity measurement us
ing the X-wire for Rec53300221,500 and also carried out th
DNS for Rec53300, and 7900. They examined the Reynolds nu
ber dependence concentrating mainly on the inner region.
though a large amount of knowledge was accumulated through
experiments, there existed always some discrepancies amon
existing experimental results, especially in the near-wall regi
More recently, Nishino and Kasagi@18,19# carried out the mea-
surement by the three-dimensional particle tracking velocime
method~PTV, hereafter! at a low Reynolds number of Ret5205
(Rec53755). They obtained a good agreement with the DNS
KMM87 @2# including the near-wall region.

In the present work, the DNS of turbulent channel flow h
been carried out with the use of the finite difference method. T
Reynolds number is set to be Ret5180, 395, and 640. For Ret
5180 and 395, the obtained results are compared with thos
KMM87 @2# and KMM90@5# to show the reliability of the presen
numerical method. On the other hand, Moin and Kim@20# carried
out a large eddy simulation for Ret5640 more than 10 years ag
to compare the results with the experiment of Hussain and R
nolds @13#. The present computation is also executed for Rt
5640 based on that of Kawamura et al.@10#, which is, to the
authors’ knowledge, the highest Reynolds number ever simula
through DNS for this configuration. Various turbulence statist

n
ditor:
001 by ASME Transactions of the ASME



Table 1 Spatial resolution

Ret 180 395 640

Computational volume (x,y,z) 12.8d32d36.4d 6.4d32d33.2d 6.4d32d32d
Computational volume (x1,y1,z1) 2304336031152 2528379031264 40963128031280
Grid number 25631283256 25631923256 51232563256
Spatial resolution (Dx1,Dz1) 9.00, 4.50 9.88, 4.94 8.00, 5.00
Spatial resolution (Dy1) 0.20;5.90 0.20;9.64 0.15;8.02
Time integration (t1) 4,320 15,800 24,800
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such as turbulence intensities, vorticity fluctuations, Reyno
stresses, their budget terms, two-point correlation coefficients,
energy spectra are examined to investigate the Reynolds-nu
dependence in detail.

Computational Domain
The DNS must meet the following two requirements to ens

the adequacy of the computation. One is that the computati
domain must be chosen to be large enough to contain the la
eddies. The other is that the grid spacing must be fine enoug
resolve the smallest eddies. The former is confirmed if the tw
point correlation becomes zero within a half of the computatio
domain. Recently, Jime´nez@21# pointed out that the product of th
wave number and the one-dimensional spectrum serves also
good measure of the computational domain. The latter can
satisfied if the one-dimensional energy spectra shows eno
drop-offs for the high wave numbers. The present computa
takes into account the above requirements, although a ra
smaller volume is selected to save the computational storage.
flow is assumed to be fully developed in an infinite tw
dimensional channel. The mean flow is inx direction and is driven
by a streamwise mean pressure gradient. Note thatx (x1), y (x2),
and z (x3) imply streamwise, wall-normal and spanwise dire
tions, respectively. The periodic boundary condition is imposed
x andz directions, while nonslip condition is adopted on the t
and bottom walls. The uniform meshes are used in thex and z
directions. On the other hand, the nonuniform meshes are ado
in the y direction. The transformation is similar to that of Moi
and Kim @20# as

yj5
1

2a
tanh@j j tanh21 a#10.5, (1)

with

j j52112
j

N2
, (2)

where a is an adjustable parameter of the transformation~0
,a,1! andN2 is the grid number of they direction. In the case of
Ret5180 and 395, a constant value ofa50.967 and 0.980 are
adopted, respectively. On the other hand, in the case oft
5640, a function is employed for the parametera

a~j j !50.988520.5j j
210.405j j

3. (3)

The computational condition is shown in Table 1. Note that
superscript1 indicates the quantities normalized by the wall va
ables, e.g.,y15yut /n and t15tut

2/n. For the highest Reynolds
number of Ret5640, the computation has been executed
33, 554, 432~51232563256! grid points to resolve the smalles
eddies.

Numerical Procedures
The coordinates and flow variables are normalized by the ch

nel half widthd, the kinematic viscosityn, and the friction veloc-
ity ut5(tw /r)1/2, where tw is the statistically averaged wa
shear stress andr is the density.

The fundamental equations are the continuity equation:
Journal of Fluids Engineering
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]ui
1

]xi*
50, (4)

and the Navier-Stokes equation:

]ui
1

]t*
1uj

1
]ui

1

]xj*
52

]p1

]xi*
1

1

Ret

]2ui
1

]xj*
2 1

] p̄1

]x1*
d i l . (5)

Here, i 51, 2, and 3 indicate the streamwise, wall-normal, a
spanwise directions, respectively. The variablest and p are the
time and the pressure. The superscript* indicates that the vari-
ables are normalized byd. Note that the third term for the right
hand side of Eq.~5! is the streamwise mean pressure gradient

The boundary conditions are

ui
150, at y50 and 2d. (6)

In the present computation, fractional step method proposed
Dukowics and Dvinsky@22# is adopted for the computational a
gorithm. Time advancement is executed by the semi-impl
scheme: Crank-Nicolson method for the viscous terms~wall-
normal direction! and Adams-Bashforth method for the oth
terms.

For spatial discretization, the finite difference method~FDM,
hereafter! is adopted. In the preceding DNSs, the pseudo-spec
method ~PSM, hereafter! has been often preferred because
higher-numerical accuracy can be obtained for a given grid s
through PSM than through FDM. On the other hand, the FDM
a potential to be applied to more complex geometries and spat
developing flow in future works; thus it is considered to be wor
while to verify an applicability of the FDM to DNS in compariso
with existing PSM results. Several DNSs have been perform
with the use of FDM by Rai and Moin@23,24# for turbulent chan-
nel and boundary layer and by Gavrilakis@25# for square duct.

In the early stage of the present work, a series of computati
were made in which DNSs of the fully developed turbulent cha
nel flow were performed with various discretization methods
cluding the upwind and the second- and fourth-order cen
schemes~Kawamura@26#; Suzuki and Kawamura@27#!.

As for the transport equation for the turbulent kinetic ener
and the Reynolds stresses, the use of the upwind scheme sh
an underestimation of the dissipation rate due to the numer
viscosity in the transportation of the turbulent kinetic energy a
the Reynolds stresses. Even in the computation with the use o
central scheme, the sum of the all terms in those transport e
tions never tended to fall to zero. It was noticed that this was
to the inconsistency between the numerical and analytical dif
ential operations employed in solution of the momentum a
transport equations.

The obtained conclusions can be summarized as follows.
transport equation of the Reynolds stresses is derived from
momentum equation through a lot of differential operations us
the continuity condition. In the calculation of DNS, the mome
tum equation must be solved with a sufficient accuracy co
sponding to the order of applied discretization. Thus, if eve
significant residual remains in the sum of the terms in the R
nolds stress transport equations, it is because the numerical d
entiation scheme is not consistent with the analytical one. T
inconsistency was pointed out first by Schumann@28# more than
JUNE 2001, Vol. 123 Õ 383
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twenty years ago. The authors group~Kawamura@26#; Suzuki and
Kawamura@27#! extended this idea to apply to DNS. The resulta
scheme was called the ‘‘consistent scheme’’ because of its
sistency between the numerical and analytical difference op
tions. It was originally with the second-order accuracy. So
more details are given in the Appendix. Later, Kajishima@29# and
Morinishi @30# extended it into the fourth-order one. The prese
computation has been executed with the second-order sch
while the fourth-order scheme is also tested and compared in
Appendix. As for the computational stencil, the staggered grid
adopted; that is, the pressure is located at the cell center an
velocities at the cell surfaces.

The Poisson equation of pressure is solved using the tridiag
matrix algorithm in the wall-normal direction and the fast Four
transform ~FFT! in the streamwise and the spanwise directio
with the use of the second-order scheme. For the viscous te
the second-order central scheme is used.

The computer employed is NWT~Numerical Wind Tunnel! lo-
cated at the National Aerospace Laboratory. It is a vectori
parallel computer with 166 processor elements, connected thro
the cross bar network of 421 MB/s. The computation speed
each processor is 1.7 GFLOPS, thus the theoretical maxim
performance of the whole system is 280 GFLOPS. In case of
highest Reynolds number of Ret5640, the computation has bee
made using of 64 processors with the typical integration time
about 1.4 s for a time step. The calculation has been execute
to 24,800n/ut

2 in order to obtain a stable statistical average.

Results and Discussion

Mean Flow Variables. Mean flow variables such as the bu
mean velocityum , the mean centerline velocityuc , the Reynolds
numbers Rem , Rec , and Reu and the friction coefficientCf are
given in Table 2 for the three Reynolds numbers. Here, Rem is the
Reynolds number based on the bulk mean velocity and the c
nel width and Rec is the one based on the mean centerline veloc
and the channel half width. Note that Reu is based on the mea
centerline velocity and the momentum thickness. In the pres
case, the momentum thicknessu is defined as

u

d
5E

0

1 ū1

ūc
1 S 12

ū1

ūc
1D dy* . (7)

In the case of Ret5640, Reu is about 10 percent lower than that o
the DNS with Reu51410 by Spalart@31# for the turbulent bound-
ary layer; while,uc for Ret5640 is roughly equivalent tou` for
Reu51410 by Spalart@31#, whereu` is the edge velocity. The
present results also agree with the correlation between the
mean velocity and the mean centerline velocity proposed by D
@32#:

uc /um51.28 Rem
20.0116. (8)

The friction coefficient is defined as

Cf5tw /S 1

2
rum

2 D , (9)

where tw is the wall shear stress. Figure 1 shows the fricti
coefficient in comparison with those of DNS by Kuroda et al.@3#
and KMM87 @2#. There included are the empirical correlatio
proposed by Dean@32# for the channel flow and the one by Bla
sius for the pipe flow. The present results are in good agreem

Table 2 Mean flow variables

Ret um uc uc /um Rem Rec Reu Cf

180 15.72 18.38 1.17 5662 3309 2958.113 1023

395 17.70 20.48 1.16 13981 8090 7546.393 1023

640 19.00 21.85 1.15 24326 13984 12835.503 1023
384 Õ Vol. 123, JUNE 2001
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with them. However, there exists a small but discernible diff
ence between the present and the KMM87@2# and KMM90 @5#
results. This is a reflection of the slight difference in the me
velocity distribution in the channel center region.

The mean velocity distribution is given in Fig. 2 and compar
with the experiment of Hussain and Reynolds@13#. The DNS of
turbulent channel flow by KMM87@2# and KMM90 @5# and the
one of the turbulent boundary layer by Spalart@31# are also in-
cluded for comparison. The present result for Ret5640 is in good
agreement with the experiment by Hussain and Reynolds@13#;
while a slight deviation from Reu51410 by Spalart@31# is found
in the logarithmic region. This is due to a characteristic differen
between the channel and the boundary layer flows.

KMM87 @2# pointed out that the logarithmic region exists ev
in the case of the lowest Reynolds number of 180; while it exte
up to a largery1 with the increase of Ret . Moreover, the wake
region is more clearly distinguished from the logarithmic one
the case of the higher Ret s.

It is well-recognized that the logarithmic region can be e
pressed as

ū15
1

k
ln y11c, (10)

wherek is the von Karman constant andc is the additive constant
Note that an overline denotes an average overx, z, and t. In the
turbulent boundary layer, Spalart@31# indicated that the result for
the higher Reynolds number of Reu51410 gavek50.41 andc
55.0. In the case of Ret5180, the additive constantc is 5.5,
which is in good agreement with that of KMM87@2#; while in the
case of Ret5640, the one by the present DNS decreases dow
5.2.

The von Karman constantk can be obtained from Eq.~10! as

Fig. 1 Friction coefficient

Fig. 2 Mean velocity distribution
Transactions of the ASME
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dū1

dy1 D 21

(11)

and is plotted in Fig. 3. It is well-known thatk obtained from the
experiments ranges from 0.40–0.42. The present calculation
cates thatk is not completely constant but it stays at a rough
constant value of 0.40 aroundy15502100. Moreover, the region
of the approximate constant tends to expand with the increas
the Reynolds number.

Turbulence Intensities. The root mean square of velocit
fluctuations is shown in Fig. 4. Those of Moser et al.@11# andurms81

of Hussain and Reynolds@13# are also plotted for comparison. A
components increase with the increase of Ret . Antonia et al.@17#
indicated that the Reynolds number dependence forwrms81 is sig-
nificant compared to that forurms81 andv rms81 . In the present results
not only wrms81 but alsov rms81 is enhanced with increasing Reynold
number. Especially, the wall-normal and spanwise compon
are enhanced. This is because the energy redistribution incre
remarkably forv rms81 and wrms81 with the increase of the Reynold
number, as will be discussed later. In Fig. 4, the present re
shows good agreement with the measurement by Hussain
Reynolds@13# for urms81 except for the peak value. This discrepan
may also be caused by the difficulty in the measurement clos
the wall. The slight difference between the present (Ret5640)
and Moser et al.@11# (Ret5590) is due to the difference in Ret .
If they are plotted versusy/d instead ofy1, the agreement is
improved for the central region. In addition, the present results
Ret5180 and 395 agree with those of Moser et al.@11#.

The root mean square of vorticity fluctuations normalized
the wall variables, i.e.,v i8n/ut

2 are shown in Fig. 5. The near-wa
values of streamwise and spanwise vorticity fluctuationsvx8

1 and
vz8

1 increase with the increase of the Reynolds number. Es
cially, vz8

1 shows a larger value for a higher Reynolds numb
This is caused by the simple shear close to the wall. The w
values ofvx8

1 andvz8
1 correspond to the coefficientsb3 andb1 ,

respectively, given in Table 3. The wall-normal vorticity fluctu
tion vy8

1 , however, tends to become independent of the Reyn
number in the near-wall region as reported by Antonia a
Kim @6#.

Reynolds Shear Stress. The Reynolds shear stress2u81v81

and the total shear stresst total are shown in Fig. 6. As the Rey
nolds number increases, the peak value of the Reynolds s
stress2u81v81 increases and its position moves away from t
wall. When Ret is 180, the peak of2u81v81 reaches 0.71 a
y1530; while, in the case of Ret5640, it becomes 0.87 aty1

Fig. 3 Von Karman constant
Journal of Fluids Engineering
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542. On the other hand, the position of the peak moves close
the wall with the increase of the Reynolds number if scaled by
channel half widthd.

The total shear stress is an identification that the calcula
reaches a statistically steady state. When the streamwise mo
tum equation is ensemble averaged, the total shear stress c
obtained as

t total512
y1

Ret
52u81v811

]ū1

]y1 . (12)

Once the statistically steady state is reached, the right and

Fig. 4 Rms of velocity fluctuations

Fig. 5 Rms of vorticity fluctuations
JUNE 2001, Vol. 123 Õ 385
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hand sides of Eq.~12! must be balanced. In the present DNS, t
statistically steady state can be confirmed for all the three R
nolds numbers, as seen in Fig. 6.

Near-Wall Behavior. In the wall vicinity, the velocity fluc-
tuations can be expanded in terms ofy1 as

u815b1y11c1y121•••, (13)

v815 c2y121•••, (14)

w815b3y11c3y131•••. (15)

Considering the expansion of Eqs.~13! and ~14!, the Reynolds
shear stress can be expanded in terms ofy1 as

2u81v8152b1c2y131•••. (16)

The wall-values ofb1 , c2 , b3 , andb1c2 are extrapolated up to
the wall and given in Table 3 in comparison with Antonia a
Kim @6#. The present results agree well with those of Antonia a
Kim @6# in the near-wall region. A discrepancy can be observ
for b1c2. This seems to be caused by the location of the first g
point and the staggered arrangement of the variables in this w
In addition, the present results indicate that the coefficients ofb1 ,
c2 , b3 , andb1c2 increase with the increase of the Reynolds nu
ber. This is because the production rate of the turbulent kin
energy increases with the increasing Reynolds number as
cussed later. Especially, the increase is significant when the R
nolds number goes up from Ret5180– 395. In the case of Ret
5640, however, the increase is rather saturated. This indic
that the low Reynolds-number effect is significant for Ret5180.

As for the wall-limiting value ofb1 or vz8 , a great deal of effort
have been devoted to reaching a consensus through the DNS
experiment. However, there exists long discussion on the qua
because of the experimental difficulties associated with the m
surements. Recently, Alfredsson and Johansson@33# carried out
the measurements in the air, oil, and water with the hot-fi
probes and specially designed sensors. They indicated that the
of the velocity shear stress fluctuation in the streamwise direc
is 40 percent of the mean-shear stress for both the channel an

Fig. 6 Reynolds shear stress and total shear stress
distributions

Table 3 Near-wall expansion coefficient

Ret b1 c2 b3 b1c2

180 ~Present! 0.361 9.43 1023 0.199 7.93 1024

180 ~Antonia and Kim@6#! 0.356 8.53 1023 0.190 7.03 1024

395 ~Present! 0.395 1.13 1022 0.247 1.03 1023

395 ~Antonia and Kim@6#! 0.395 1.13 1022 0.245 9.53 1024

640 ~Present! 0.409 1.23 1022 0.261 1.13 1023
386 Õ Vol. 123, JUNE 2001
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boundary layer flows. This corresponds tob150.40 in the present
definition. Komminaho et al.@34# computed the plane turbulen
Couette flow at a Reynolds number of 750 based on half
velocity difference between the walls and half the channel wid
They indicated a value ofb150.41 at the wall. This is in good
accordance with the present value ofb150.409 for Ret5640. In
the case of the Couette flow, the total shear stress is cons
independent upon the Reynolds number. This is equivalent to
Poiseuille flow with an infinite Ret ~see Eq.~12!!. These indicate
that the decrease inb1 with decreasing Ret found in Table 3 is due
to the reduction of the total shear stress for the smaller Ret in the
wall vicinity.

Two-Point Correlations. Streamwise and spanwise two
point correlations of velocity fluctuationsR( i i ) for Ret5640 are
shown in Fig. 7. No summation rule is applied to the parent
sized indices. In the near-wall region, all of the three compone
tend to fall off to almost zero within a half width of the compu
tational domain for both the streamwise and spanwise directio
Moving away from the wall, however, the spanwise two-po
correlationR11 gives a small but noticeable deviation from ze
even at the half of the spanwise computational domain. T
means that there exist the large scale structures in the center o
channel and that the present computational domain is not eno
large to capture some of the largest scale ones. Recently, Jim´nez
@21# investigated the large scale structures in the center of
channel and indicated that even the computational dom
adopted by Moser et al.@11# is too short to contain the large sca
ones. The large scale structures were also found by Kommin
et al. @34# in the Couette flow. They observed streamwise str
tures of the order of 40d in the center of the channel. The abov
large structures will be investigated with the use of the ene
spectra and be discussed later.

The spanwise two-point correlationR11 is given in Fig. 8 and
compared with the experiment by Nishino and Kasagi@19#. It is
interesting to note that the near-wall negative peak of the sp
wiseR11 becomes less prominent with the increase of Ret . This is
in accordance with the observation that the streamwise streak
clustered in higher Reynolds number as discussed later.

Energy Spectra. One-dimensional energy spectra of veloci
fluctuationsE( i i ) in the near-wall region for Ret5640 compared
with that for Ret5180 are shown in Fig. 9, wherekx andkz are
the wave numbers in the streamwise and spanwise directions
spectively. Note thatE( i i ) is normalized by the wall units. The
energy spectra show acceptable drop-offs in the streamwise
spanwise directions irrespective of the Reynolds number, altho
a slight pile-up is seen for the highest wave numbers in the sp
wise direction. A large difference among three components is
served in the lower wave number region for both the streamw
and spanwise directions. Especially, the difference is signific
for the spanwise energy spectra. This indicates that the turbule
structure for the near-wall region becomes more anisotropic
space than the one for the channel center. Moreover,Evv andEww
exhibit noticeable increase in the lower wave number with
creasing Reynolds number for both the streamwise and span
directions, which is in good accordance with the increase inv rms81

andwrms81 .
To investigate whether or not the smallest eddies are resol

Fig. 10 showskx
2Euu(«

3/n)21/4 referring to Saddoughi and Veer
avalli @35#, which represents the energy spectra of the turbule
dissipation rate. In the present result, its peak value occur
kx /kd50.120.2 and falls off forkx /kd.0.5 roughly irrespective
of the Reynolds number. This corresponds to the well-known f
that the small scale eddies dissipate the energy at a lower w
number than the Kolmogorov scale~Tennekes and Lumley@36#!.
Although, overkx /kd50.2, some difference is found between th
present result and that by PSM~Moser et al.@11#!, those higher
Transactions of the ASME
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wave numbers are less effective for the turbulence statistics.
means that the present spatial resolution is sufficiently sma
resolve the energy dissipative eddies.

To show the validity of the adopted computational doma
Figs. 11~a! and 11~b! show the premultiplied energy spect
kxEuu /u8u8 and kzEuu /u8u8, respectively, referring to Jime´nez
@21#. In the near-wall region, the peak ofkzEuu /u8u8 occurs at
lz

1.100 independent of the Reynolds number, which agrees w
the well-known average spacing of the streamwise streak st
tures. On the other hand, that ofkxEuu /u8u8 arises atlz

1

.1000. These correspond to the formation of the streaks
shown later~see Figs. 16 and 17!.

In the center of the channel, however, the peak ofkzEuu /u8u8
moves toward a largerlz

1 ; i.e., lz
1.1000 as indicated by Jime´-

Fig. 7 Two-point correlation coefficients of velocity fluctua-
tions for Re tÄ640: „a…, „b… streamwise, „c…, „d… spanwise corre-
lation coefficients
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nez @21#. On the other hand, that ofkxEuu /u8u8 stays atlx
1

.1000. This means that the spanwise structure is enlarged
the increase ofy1. In the present computation for Ret5640, the
peak of kzEuu /u81u81 cannot be obtained at the center of th
channel. This indicates that the largest scale has not been cap
totally at the central region of the channel for Ret5640. The
present authors are now performing another computation with
extended domain for streamwise and spanwise directions.
preliminary results indicate that its effect on the fundamental t
bulent statistics is sufficiently small.

Budget of Reynolds Stressui8uj8 and Turbulent Kinetic
Energy k. Budget terms of Reynolds stressui8uj8 normalized by
n/ut

4 are expressed as follows:

Production: Pi j 52S uj8
1uk8

1
]ūi

1

]xk
1 1ui8

1uk8
1

]ū j
1

]xk
1 D ,

(17)

Turbulent diffusion: Ti j 52
]

]xk
1 ~ui8

1uj8
1uk8

1!, (18)

Vel. p. -grad. corr.: P i j 52S uj8
1

]p81

]xi
1 1ui8

1
]p81

]xj
1 D ,

(19)

Molecular diffusion: Di j 5
]2

]xk
12 ~ui8

1uj8
1!, (20)

Dissipation: « i j 52S ]ui8
1

]xk
1 D S ]uj8

1

]xk
1 D . (21)

Figure 12 shows the budget terms of the Reynolds stresses
Ret5640 compared with those of Ret5180 and 395. Foru81u81

component, as the Reynolds number becomes higher, the
value of the production and the wall values of the molecular d
fusion and dissipation increase. The production almost balan
with the some of the dissipation and the velocity pressure-grad
correlation~v.p.g, hereafter! terms. On the other hand, forv81v81

and w81w81 components, the v.p.g and dissipation terms
dominant and increase significantly with the increase of the R
nolds number. These indicate that the Reynolds-number effec
v81v81 andw81w81 components is more enhanced than that
u81u81.

Budget terms of turbulent kinetic energyk(5(u81u81

1v81v811w81w81)/2) normalized byn/ut
4 are given in Fig. 13

for the three Reynolds numbers calculated. Note that the v

Fig. 8 Spanwise two-point correlation coefficient R11 at y¿

Ä11
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Fig. 9 One-dimensional energy spectra of velocity fluctuations for Re tÄ640 in comparison
with Re tÄ180: „a… streamwise, „b… spanwise
a
i

n

e

ant
the
in-
ote
term is reduced to the pressure diffusion one due to the contin
condition. Figure 13 indicates that all terms gradually incre
with the increase of Ret . Especially, the wall values of the diss
pation and molecular diffusion increase appreciably with the
creasing Reynolds number. The peak value of the production t
Pk,max becomes 0.25 as the Reynolds number goes to the infi
In the present results,Pk,max is 0.218 for Ret5180; while, it
reaches 0.239 for Ret5640. The increase inPk,max from Ret
5180 to 640 is small but significant. This point will be discuss
later together with the pressure strain term.

The v.p.g term can be split into the pressure strain and
pressure diffusion terms as follows:

(22)

Fig. 10 Streamwise one-dimensional energy dissipation spec-
tra normalized by Kolmogorov scale
, JUNE 2001
uity
se
-
in-
erm
ity.

d

the

It is well-known that the pressure strain term plays a domin
role on the energy redistribution. Figure 12 indicates that all
components for the pressure strain term exhibit a prominent
crease with increasing Reynolds number. It is interesting to n
that the increase in the pressure strain ofu81u81 from Ret

Fig. 11 Premultiplied energy spectra for Re tÄ640 „a…
k zEuu Õu 8u 8, „b… k xEuu Õu 8u 8
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rate
5180– 640 is about 0.02 around its peak. This value is roug
equal to the increase in the peak ofPk . SincePk is a half of the
P11, it means that about half of the increase in the production
of u81u81 is consumed byu81u81 itself and the rest half is
transferred to the other components. This is the reason whyv rms81

andv rms81 increase significantly with the increase of the Reyno
number.

Dissipation Rate of the Reynolds Stresses.The dissipation
rate of the Reynolds stresses is the quantity obtained best
DNS. The anisotropy of the dissipation rate for the normal R
nolds stress components is of a great concern in the modelin
turbulence. Mansour et al.@37# examined the DNS data o
KMM87 @2# for Ret5180 and found that the following expressio
is a good approximation except for the off-diagonal compone

Fig. 12 Budget of Reynolds normal stresses: „a… u 8¿u 8¿, „b…
v 8¿v 8¿, „c… w 8¿w 8¿, , RetÄ640; – – –, RetÄ395; - - -, Ret

Ä180
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«~ i i !5
u~ i !81u~ i !81

2k
2«. (23)

The present results are compared with the above approximatio
Fig. 14. The agreement is generally good for all the normal co
ponents. If examined more precisely, however, the agreeme
less satisfactory in the central region ofi 51 and 2 and also in the
near-wall region ofi 52. In the near-wall region, referring to
Launder and Reynolds@38#, the relation of Eq.~23! is exactly
valid for i 51 and 3; while, fori 52, the wall asymptotic value of
«22 becomes

«2254c2
2y12, (24)

wherec2 is the expansion coefficient in Eq.~14!. The above rela-
tion is shown in Fig. 14 with a dashed straight line; the agreem
is good in the close vicinity of the wall. The above Eq.~24! is
equivalent to

«2254
v81v81

2k
2«, (25)

instead of Eq.~23!. This is one reason why the agreement of E
~23! is not so good fori 52 as seen in Fig. 14.

To examine the above approximation further, the anisotro
tensors are defined for the Reynolds stress and its dissipation
as follows:

Fig. 13 Budget of turbulent kinetic energy: ——, Re tÄ640;
, RetÄ395; - - -, RetÄ180

Fig. 14 Dissipation rate of the normal Reynolds stresses for
RetÄ640 symbol, «

„ i i … by Eq. „23…; , u
„ i …8¿u

„ i …8¿„«Õk …;
" " " , „2Õ3…«; , 4c 2

2y¿2
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bi j 5
ui8

1uj8
1

2k
2

d i j

3
, (26)

di j 5
« i j

2«
2

d i j

3
. (27)

Antonia et al.@39# compared the relation betweenbi j anddi j for a
turbulent boundary layer. The same kind of comparison is m
here for the turbulent channel flow in Fig. 15. For the abo
approximation of Eq.~23! to be exactly valid, the equalitydi j
5bi j must hold. The arrows in Fig. 15 indicate the direction fro
the wall to the channel center. The starting point~wall value! lies
on the line ofdi j 5bi j ; especiallybi j 5di j 521/3 for i 5 j 52.
The relation ofdi j 5bi j holds roughly for the whole region. It is
however, interesting to note thatdi j becomes parallel to the hori
zontal axis where the absolute value ofbi j is small. This means
that the dissipation becomes nearly isotropic irrespective of
Reynolds stress anisotropy in the central region. This supports
well-known belief that the dissipation must be almost isotro
because it takes place in the microscale, which is more isotr
than the large scale eddies. The isotropic expression

«~ i i !5
2

3
« (28)

is plotted with the dot-dashed line in Fig. 14. This is indeed in
better agreement than Eq.~23! in the central region.

Instantaneous Flow Field. A lot of knowledge has been ac
cumulated for the turbulent structures through the experime
observation and the analysis of the DNS data. In the present s
we focus mainly on the Reynolds number dependence for
quasi-coherent structures such as vortices and streaks. Figur
and 17 show the high- and low-speed streaks and the secon
variant of the deformation tensor (II 85]ui8/]xj•]uj8/]xi) for
Ret5180 and 640. The visualized domain is set in wall units to
115231803576 for Ret5180 and 204836403640 for Ret5640
in x, y andz directions, respectively. Note that fluid flows from th
bottom left to the top right.

Chong et al.@40# proposed the identification of the vortex re
gion which exhibits the circular or spiral motion with using th
second invariant of the deformation tensor. The low pressure
gion (p81) does not necessarily correspond to the vortex core
indicated by Kim@41# and Robinson@42#. Thus, the second in
variant of the deformation tensor is adopted to detect the vo
structure in the present research. When the Reynolds numb
low as Ret5180, the well-known vortex structures such as sin
quasi-streamwise vortices are dominant. On the other hand, a
Reynolds number increases up to Ret5640, many different vorti-
cal structures such as the vortical arches are found beside
single streamwise vortices. The vortical arches are rolled up o

Fig. 15 Relation between anisotropy tensors b ij and d ij
390 Õ Vol. 123, JUNE 2001
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the low-speed streaks. Other vortices including the single stre
wise vortices are also associated closely with the low-sp
streaks.

As for the streaks, high- and low-speed streaks are obtained
both Ret’s. The low-speed streaks are more elongated than
high-speed ones for both of the Reynolds numbers observed.
spanwise two-point correlationR11 is generally used to estimat
the spacing of the streaks. It is known that the position of
negative peak ofR11 provides an estimation of the mean sepa
tion between the high- and low-speed streaks; that is, the st
spacing becomes twice of the distance to the negative p
KMM87 @2# obtained the minimum value ofR11 at z1.50 and

Fig. 16 High- and low-speed streaks and the second invariant
of the deformation tensor for Re tÄ180 „u 8¿ËÀ3.0; light-gray,
u 8¿Ì3.0; dark-gray, II8¿ËÀ0.03; white …

Fig. 17 High- and low-speed streaks and the second invariant
of the deformation tensor for Re tÄ640 „u 8¿ËÀ3.0; light-gray,
u 8¿Ì3.0; dark-gray, II8¿ËÀ0.03; white …
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indicated that the streak spacing wasDz1.100, with which the
present DNS for Ret5180 gives a good agreement as shown
Fig. 16. Comparison of Figs. 16 and 17 indicates that the sep
tion of the high- and low-speed streaks is more prominent in
lower Reynolds number and less in the higher one. That is, in c
of Ret5640, the shape of the streaks becomes more complic
and the several streaks are clustered with each other. More
several low-speed streaks are often lifted up from the wall
finally broken up~see Fig. 17!. This observation is in agreemen
with the finding that the local minimum of theR11 becomes less
prominent with the increase of the Reynolds number as see
Fig. 8.

Conclusions
The direct numerical simulation of a fully developed turbule

channel flow has been carried out. The Reynolds number is s
be Ret5180, 395, and 640. The computation has been exec
with the use of the finite difference method. Various turbulen
statistics, such as turbulence intensities, vorticity fluctuatio
Reynolds stresses, their budget terms, two-point correlation c
ficients and energy spectra, were obtained to investigate the
nolds number dependence. The conclusions are derived
follows:

1 With the increase of Ret , the increase in the wall-norma
(v rms81) and spanwise (wrms81) components is more enhanced th
that of the streamwise one (urms81). About half of the increase in the
production rate ofu81u81 is consumed byu81u81 and the rest
half is transferred to the other components.

2 The near-wall expansion coefficients increase significantly
the Reynolds number goes up from Ret5180– 395, but become
rather saturated for Ret5640. The wall-limiting value ofb1 ob-
tained as 0.409 agrees with the experiment for the channel flow
Alfredsson and Johansson@33# and the DNS for the Couette flow
by Komminaho et al.@34#.

3 The examination of the spanwise two-point correlation co
ficient R11 reveals that the negative peak ofR11 becomes less
prominent with the increase of the Reynolds number. This ag
with the more complex streak shapes observed in the insta
neous velocity field for the higher Reynolds number.

4 The dissipation energy spectrakx
2Euu(«

3/n)21/4 in the center
of the channel exhibits a peak value atkx /kd50.120.2 and falls
off for kx /kd.0.5 irrespective of the Reynolds numbers calc
lated as indicated by the local isotropic theory~Tennekes and
Lumley @36#!.

5 The anisotropy of the dissipation rate for the Reynolds n
mal stresses is compared with closure models. The anisotrop
pronounced in the wall vicinity; while the well-known isotrop
nature is confirmed in the central region for a higher Reyno
number.

6 The second invariant of the deformation tensor represents
vortices such as the single streamwise vortices and the vor
arches for Ret5640. In addition, different vortical structures a
captured with the increase of the Reynolds number. As for
streaks, rather simple and separated streaky structures are
served for the lower Reynolds number of Ret5180; while, the
shape of the streaks becomes more complicated and se
streaks are clustered with each other for the higher Reynolds n
ber of Ret5640.

The present database is open to public access. The det
information is given at http://muraibm.me.noda.sut.ac.jp
pagel.html.
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Nomenclature

bi , ci , di 5 coefficient of series expansion
bi j 5 anisotropy tensor of Reynolds stress
Cf 5 friction coefficient

c 5 additive constant of the logarithmic law
di j 5 anisotropy tensor of dissipation rate
Ei j 5 one-dimensional energy spectra of velocity flu

tuations
k 5 turbulent kinetic energy

kx , kz 5 wave number for streamwise and spanwise di
rection

kd 5 Kolmogorov wave number
p 5 pressure

Pk 5 production rate for the turbulent kinetic energy
Rii 5 two-point correlation coefficient of velocity

fluctuations
Ret 5 Reynolds number5utd/n
Rem 5 Reynolds number5um2d/n
Rec 5 Reynolds number5ucd/n
Reu 5 Reynolds number5ucu/n

t 5 time
ui , u, v, w 5 velocity component

ut 5 friction velocity5Atw /r
uc 5 mean centerline velocity
um 5 bulk mean velocity
u` 5 edge velocity of the turbulent boundary layer

x1 , x 5 streamwise direction
x2 , y 5 wall-normal direction
x3 , z 5 spanwise direction

Greek

d 5 channel half width
d i j 5 Kroneker symbol

« 5 dissipation rate of turbulent kinetic energy
« i i 5 dissipation rate of Reynolds stress
k 5 von Karman constant
u 5 momentum thickness
n 5 kinematic viscosity

v i 5 vorticity component
r 5 density

lx , lz 5 wavelength for streamwise and spanwise direc
tion

tw 5 statistically averaged wall shear stress
t total 5 statistically averaged total shear stress

Superscripts and Subscripts

~ !* 5 normalized byd
( )1 5 normalized byut , n andr
( )8 5 fluctuationcomponent
(¯) 5 statistically averaged overx, z, andt

( )rms 5 root mean square
( )max 5 maximum value

Appendix

A. Consistent Scheme. The convection terms forui can be
expressed in either advective (adv.[uj]ui /]xj ) or divergence
(div.[]/]xjuiuj) forms. Since

]

]xj
uiuj5uj

]ui

]xj
1ui

]uj

]xj
, (29)

the advective and divergence forms are analytically equal if
continuity condition is satisfied. Thus, this equality must be sa
JUNE 2001, Vol. 123 Õ 391



Fig. 18 Mean velocity distribution by fourth-order calculation
d

t
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Fig. 19 Rms of velocity fluctuations by fourth-order
calculation
Fig. 20 One-dimensional energy spectra of velocity fluctuations by fourth-order calculation:
„a… streamwise, „b… spanwise
ond

are
fied in the numerical discretized scheme, too. This is the con
tency between the analytical and numerical differential operatio

In the present computational stencil, the staggered grid
adopted; that is, the pressure is located at the cell center an
velocities at the cell surfaces.

The following difference operation is defined referring
Morinishi @30#

df

dx1
5

f~x11h1/2, x2 , x3!2f~x12h1/2, x2 , x3!

h1
, (30)

wheref is a variable in thex1 direction. Interpolation operator is
given as

f̄
x15

1

2
~f~x11h1/2, x2 , x3!1f~x12h1/2, x2 , x3!!. (31)

Moreover, a special interpolation of the variables betweenf and
c in the x1 direction is expressed as
sis-
ns.
is
the

o

fc
x1

[
1

2
f~x11h1/2, x2 , x3!c~x12h1/2, x2 , x3!

1
1

2
c~x11h1/2, x2 , x3!f~x12h1/2, x2 , x3!. (32)

The present numerical discretization is based on the sec
accuracy~Kawamura@26#; Suzuki and Kawamura@27#! and de-
fined as follows.

The discretized continuity equation can be expressed as

~Cont.![
dui

dxi
50. (33)

For the convective terms, the advective and divergence forms
discretized as

~Adv.! i[uj
xi

dui

dxj

xj

, (34)

and
Transactions of the ASME
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~Div. ! i[
duj

xi
ui

xj

dxj
. (35)

One can easily confirm that these forms are connected with
following relation:

~Adv.!a5~Div. !a2ua•~Cont.!
1xa

, (36)

where the summation convention is not applied to the suffixa.
Equation~36! corresponds to the analytical equality of Eq.~29!.
Therefore, the discretized scheme becomes independent o
above forms within the numerical accuracy of the continuity eq
tion ~Eq. ~33!!. In the present computation, the advective form
adopted for the convective terms. Similar numerical operati
have also been devised to calculate the budget terms of the
nolds stress transport equations with retaining the consistenc

B. Fourth-Order Calculation. To examine the numerical ac
curacy of the present calculation, the fourth-order scheme
posed by Morinishi@30# is adopted in thex and z directions for
spatial discretization. The rest of the calculation method is
same as the one adopted in the text. The Reynolds number is
be Ret5640.

The mean velocity distribution and the root mean square of
velocity fluctuations are shown in Figs. 18 and 19, respectiv
The results by the fourth-order scheme are in agreement
those by the second-order one in the whole region. The sm
discrepancy, however, is observed in the channel center regio
the turbulence intensities, but it is not significant.

One-dimensional energy spectra of velocity fluctuationsE( i i )
are given in Fig. 20 in comparison with that of the second-or
scheme. In the streamwise energy spectra, no significant di
ence can be found between the second- and fourth-order sche
In the spanwise energy spectra, on the other hand, a notice
difference can be seen in the highest wave numbers. These
numbers are, however, already beyond the peak of the dissip
spectra; thus the effect is not so significant so long as higher-o
correlations and derivatives are not concerned.

For the results, it can be concluded that the mean properties
the second moment correlations can be captured even by
second-order scheme with the present grid resolution. This c
clusion, as a matter of course, depends upon the grid resolutio
the case of DNS, however, an enough fine grid is adopted in
tably to capture the finest scale of turbulence. This is the rea
why the acceptable results can be obtained even with the sec
order scheme.
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