Directed Energy Air Spike による 空力加熱率減少の数値シミュレーション

高木 亮治*

Numerical Simulation of heating rate reduction by Directed Energy Air Spike

Ryoji TAKAKI*

Key Words:

概 要

This paper presents a computational parametric study showing how heat release affects aerodynamic characteristics, drag and heating rate, of a hypersonic flow over an axisymmetric blunt body. A thermal and chemical non-equilibrium viscous flow is assumed together with seven species and finite-rate chemical reactions. Park's two-temperature model is also used to take account of thermally non-equilibrium phenomena. Results show that heat release in the upstream of the body can reduce not only the aerodynamic drag but also the aerodynamic heating rate on the body. Three parameters which control heat release are introduced and their effects on the flow structure, especially on the drag and the heating rate, are presented. It is shown that the drag is reduced to 23% of the baseline value (the drag of the flow without heat release) and the aerodynamic heating rate to 74%.

1. はじめに

近年研究・開発が盛んに行われている宇宙往還機や 極超音速飛行体の設計においては、苛酷な熱環境を如 何に克服するかという事が最も重要な問題である。つ まり機体を厳しい熱負荷から守るために機体設計者は 様々な熱対策、例えば耐熱性の高い材料の採用、冷却 システムの利用、空力加熱が小さくなる機体形状の採 用といった事を行わなければならない。炭素繊維やセ ラミックタイル等が耐熱性の高い材料として一般に採 用されているが、機体表面の温度はこういった耐熱材 料の限界温度を容易に越えてしまう。一方、冷却シス テムを用いれば表面温度を下げることはそれほど難し い事ではないが放出するための冷却媒体が必要となり、 機体重量の増加を招き、ひいてはペイロードの減少と なる。機体先端形状として鈍頭形状を採用する事は簡 単でまた効果の高い方法であり熱環境の厳しい飛行体 の設計において広く用いられている。確かにノーズ半 径を大きくすると空力加熱を減少させることができる が、この大きなノーズ半径は逆に空力抵抗の増大を招 く結果となる。そのためより大きなエンジン推力、燃 料が必要となり結果的にペイロードが減少する。鈍頭 形状の空力抵抗を減らすための研究はこれまでに数多 くなされており、有名な方法として鈍頭物体の先端に 鋭い突起物(スパイク)をつける事で空力抵抗が減少す ることが報告されている1)。確かにスパイクをつける ことで空力抵抗は劇的に減少するが、鋭い先端部での 熱負荷を考えると極超音速飛行において用いることは 不可能である。この様に空力抵抗を減少させるか、も しくは空力加熱を減少させるかという二者択一的な選 択を設計者は常に迫られているのである。

*航空宇宙技術研究所

図 1: 鈍頭物体の上流に熱源を配置した流れ

近年高速流中の鈍頭物体の空力抵抗を減少させる手 法として図1で示すような新しい手法が提案された。 熱源は電磁波、レーザー、化学反応等で発生させるこ とが提案されている。鈍頭物体の上流に配置された熱 源はあたかも物理的なスパイクと同じ様に働き、鈍頭 物体の前方に発生する弓状衝撃波を変形させたり、別 の衝撃波を生成したりする。この非物理的なスパイク (Directed Energy Air Spike;DEAS²))は物理的なスパ イクによって得られると同等かもしくはそれ以上に空 力抵抗を減少させることができる。と同時に物理的な スパイクとは異なり熱環境に関する問題も発生しない ので極超音速飛行においても利用できる。

DEAS による空力抵抗の減少効果は実験³⁾及び計算 ^{4,5,6)} で確認されているが、十分とは言えない。また DEAS による空力加熱への影響はまだ議論されていな い。そこで本論文では DEAS による空力加熱への影響 を数値シミュレーションを用いて調べる。その際極超 音速流の現象をより定量的に解析するため高温気体効 果を考慮した解析を行う。また DEAS を制御するパラ メータとして3つのパラメータを導入したパラメトリッ ク計算を行い、各パラメータの特性についても調べる。

2. 数值解析手法⁷⁾

解析対象として極超音速流中におかれた半径 1mの半球まわりの流れを想定した。そのため流れ場は定常な軸対称流れとした。高温効果による気体分子、原子の化学反応を考慮するため 7 化学種 $(O_2, N_2, N, O, NO, NO^+, e^-)$ 18反応を考えた。また熱力学的非平衡を考慮するため Park の 2 温度モデル⁸⁾を用いた。2 温度モデルとは気体分子の内部エネルギーの各モードについて並進・回転モードは平衡であるとして温度 T で表し、また振動・電子励起・電子並進モードは別の平衡状態にあるとして振動温度 T_V で表すモデルである。熱源としてガウス分布

$$G(x,r) = \frac{1}{2\pi\sqrt{2\pi}L^3} exp\left(-\frac{x^2+r^2}{2L^2}\right)$$
(1)

を仮定して、単位体積、単位時間当たりに投入される エネルギのソース項 *Q_{in}*を以下の式で表現した。

$$\dot{Q}_{in} = \pi R^2 E_{\infty} V_{\infty} E_c \times G(x - x_c, r - r_c).$$
(2)

ここで、(x,r) は円筒座標系、G(x,r) はガウス関数、 R(=1m) は半球の半径、 E_{∞}, V_{∞} はそれぞれ一様流の 全エネルギーと速度を表す。また x_c, L, E_c は熱源を制 御するパラメータとして導入されたもので、それぞれ 熱源位置 (熱源と半球との距離)、ガウス分布の分布形 状を与える特性長さ、投入エネルギ量を制御する係数 である。本計算では軸対称流を仮定している。つまり 熱源は常に対称軸上に存在するため $r_c = 0$ とした。本 計算では半球の投影面積を単位時間通過する一様流の エネルギ ($\pi R^2 E_{\infty} V_{\infty}$)を基準エネルギとしているため E_c はこの基準エネルギにかかる係数となる。

軸対称の Navier-Stokes 方程式と各化学種及び振動エ ネルギの保存式を支配方程式とし、これらを有限体積法 で離散化した。慣性項の数値流束の構築には AUSMDV スキーム⁹⁾を用い MUSCL 法で高精度化した。その際 に minmod limiter を用いて不連続面での振動を抑え た。時間積分については LU-ADI と局所時間刻法を用 いた。またソース項に関しては別途 point implicit 法 を用いた。

図 2(a)、2(b) はそれぞれ x_c が大きいときの計算格 子 (grid I) と小さい時の計算格子 (grid II) を示す。計 算格子は代数的に生成し、格子点数は流れ方向に 700 点 (grid I) 及び 300 点 (gridII)、半径方向に 102 点を用 いた。空力加熱率の評価においては物体近傍の最小格 子幅が非常に重要となるため本計算に入る前に格子収 束性を調べ最小格子幅を決定した。

計算条件としては文献²⁾ で提案されている帰還経路 から高度 48km の地点を選んだ。マッハ数は約 14、レ イノルズ数は 3×10⁵ である。物体表面は 1200K の等 温壁とし、完全非触媒性を仮定した。詳細は表 1 にま とめてある。

熱源のモデル化の所で述べた熱源を特徴付ける3つ のパラメータの値を表2にまとめた。

本計算の前の準備計算で x_c は他パラメータ E_c 、Lと独立に考えることができることがわかった。そこで x_c のパラメトリック計算は独立に行うことにした。つまり x_c を変化させる時は $E_c \ge L$ は固定しておき、こ

(a) grid I (700×102)

(b) grid II (300×102)

図 2: 計算格子

表 1: 計算条件

Temperature	T_{∞}	$264.078 \ [K]$
Pressure	p_{∞}	$68.47 \ [Pa]$
Velocity	V_{∞}	4550 [m/s]
Mach number	M_{∞}	13.92
Reynolds number	R_e	$2.65 imes 10^5$
Wall temperature	T_{wall}	$1200 \ [K]$
Wall catalyticy		Non-catalytic wall

のケースをグループ I と呼ぶ (表 2 を参照)。表 2 のグ ループ II は x_c を固定し E_c と L を変化させたパラメ トリック計算である。

表 3 はグループ II の各計算ケースを示す。ここでは $x_c = 4.0$ に固定されている。〇 印は計算したケース を、× 印は計算されたが不具合が発生したケースを示 す。この不具合に関しては後程言及する。

3. 計算結果

まず初めに熱源のある場合の流れの概略について説明する。流れの構造は各パラメータの値によって異るがここでは典型的な例を示す。各パラメータの値は $x_c = 4.0, L = 0.2, E_c = 0.05$ である。図3は温度 $(T, T_V),$ 圧力、マッハ数の等線図である。熱源によりそのまわりに圧縮波が発生し、それらが下流に向かって次第に収束しー本の衝撃波になっている様子がわかる。ここではこの衝撃波を"primary shock"と呼ぶ。また半球の前方

表 2: 熱源を制御するパラメータの値

	Group I (x_c)	Group II (L and E_c)
x_c	$2, 4, 6, 8, 10 \\12, 14, 16 \\18, 20, 22$	4
L	0.1, 0.2, 0.4	$\begin{array}{c} 0.03, 0.05, 0.07, 0.08\\ 0.1, 0.12, 0.13, 0.15\\ 0.2, 0.25, 0.3, 0.4\end{array}$
E_c	0.01	$\begin{array}{c} 0.00001, 0.0001, 0.001\\ 0.005, 0.01, 0.05\\ 0.1, 0.2, 0.5, 1.0, 10\end{array}$

						\overline{E}_{c}						
		0.00001	0.0001	0.001	0.005	0.01	0.05	0.1	0.2	0.5	1.0	10.0
	0.4			\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×
	0.3			\bigcirc		\bigcirc						
	0.25			\bigcirc		\bigcirc	\bigcirc					
	0.2		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×		×	×	\times
	0.15			\bigcirc		\bigcirc	\bigcirc					
L	0.13					\bigcirc						
	0.12					\bigcirc						
	0.1		\bigcirc	\bigcirc		\bigcirc		×		×	×	
	0.08			\bigcirc								
	0.07			\bigcirc								
	0.05		\bigcirc	\bigcirc		\bigcirc		×				
	0.03	\bigcirc	\bigcirc	\bigcirc		×						
		•										

表 3: 各計算ケース (Group II, x_c = 4.0)

(a) **温度**

(d) マッハ数

図 3: 熱源がある場合の流れの構造

に発生する衝撃波を "secondary shock" もしくは "bow shock" と呼ぶ。この primary shock は bow shock と衝 撃波干渉を起こし、bow shock の形状を変化させてい る。また熱源により温度層 (Temperature layer) が存在 し bow shock と干渉を起こしている (図 3(a)、3(b) を 参照)。bow shock の変形は主にこの温度層との干渉に よるものと考えられる。またこれらの干渉により bow shock 層内の構造も影響を受け例えば図 3(a) では接触 面の存在が観察できる。ここでは示していないが bow shock 層内に循環領域が存在し、前述の接触面はこれ ら循環領域の境界面となっている。熱源後の流れは全 体的には膨張流れと似た構造となっている。図4 に熱 源の有る場合の対称軸上の並進温度、振動温度、圧力、 マッハ数分布を示す。熱源による加熱で並進温度が上

図 4: 対称軸上の各種物理量の分布

昇しそれに追従して振動温度も上昇している。その後 熱源下流では並進温度は徐々に減少するが、振動温度 との間にかなりの温度差が見られる。このことより熱 源下流では非平衡性が強いことがわかる。図3及び図4 と併せて考えると熱源下流では流れが膨張流となって おり、そのためいわゆる凍結流となっていると考えら れる。マッハ数分布は熱源位置で急激に減少しその後、

図 5: 対称軸上の各化学種のモル分率分布

図 6: 半球表面での圧力、空力加熱率分布

並進温度の減少に伴い徐々に増加していく。また静圧 は熱源により一旦増加するがその後減少している。bow shock の直前のあらゆる物理量は一様流のもの、言い 替えると熱源が無い場合のものとは異っておりそのた め bow shock 後方での値も熱源が無い場合とは異って いると予測できる。

図5に熱源がある場合の対称軸上の各化学種のモル 分率分布を示す。図5では熱源位置とbow shock 層で 化学反応が起こっているのが観測できる。酸素分子と 窒素分子は部分的に解離し、それぞれ酸素原子、窒素 原子を生成する。熱源後の流れでは温度変化にもかか わらず化学反応が起こっていないので凍結流になって いることがこの図からもわかる。bow shock 層では窒 素分子が部分的に更に解離し、窒素原子を増加させて いるが、bow shock の直後で窒素分子の再結合反応が 見られ、窒素原子が急速に減少している。一方、酸素 分子の再結合は bow shock 層内では発生せず、酸素分 子は完全に解離していることがわかる。

図6に熱源がある場合の半球表面上での圧力及び空 力加熱率分布を示す。熱源が無い場合と比較した場合、 分布形状が大幅に異なっていることがわかる。ピーク の位置が圧力、空力加熱率共に外側に移動し、絶対値 自体も減少している。また両者とも淀み点付近での分 布が平坦になっている。この分布形状より抵抗と加熱 量の減少が期待できる。特に圧力の場合、このピークの 外側への移動と絶対値の減少という二つに要因によっ て半球の抵抗が減少することが予測できる。つまり圧 力の絶対値が同じだとしても、外側領域は表面の鉛直 方向と抵抗成分の方向とのなす角が大きく抵抗に寄与 する割合が相対的に小さくなるためである。

空力特性に与える影響として空力抵抗*C_D*と加熱量*Q*をここでは議論する。それぞれ以下の式で定義される。

$$C_D = \frac{\int_S F_x ds}{\frac{1}{2}\rho_{\infty} V_{\infty}^2 S_0}, \quad S_0 = \pi R^2,$$
(3)

$$\dot{Q} = \int_{s} \dot{q} ds, \qquad (4)$$

ここで ∫_S は半球表面に渡って積分することを意味す る。抵抗と加熱量を評価するため、それぞれ熱源の無 い場合の値で無次元化した値について議論する。

$$\frac{C_D}{C_{D0}}$$
 and $\frac{Q}{\dot{Q}_0}$, (5)

ここで添字0は熱源が無い場合の値を示す。また抵抗 と加熱量を同時に評価する値として以下の式で定義さ れる値を用いた。

$$\frac{1}{2} \left(\frac{\Delta C_D}{C_{D0}} + \frac{\Delta \dot{Q}}{\dot{Q}_0} \right),\tag{6}$$

ここで

$$\Delta C_D = C_{D0} - C_D \quad \text{and} \quad \Delta \dot{Q} = \dot{Q}_0 - \dot{Q}. \tag{7}$$

である。式6の定義に関しては設計目的に応じて様々な 定義が使われるが、ここでは最も簡単な上記の定義を 用いることにする。また熱源を設定することで空力特性 を向上させることを目指しているので以下の議論では 空力特性が悪化した場合、つまり $\Delta C_D < 0 \Rightarrow \Delta \dot{Q} < 0$ の場合は取り扱わないことにする。

図7に抵抗及び加熱量に対するパラメータ xcの影響 を示す。図中にあるエラーバーは解の非定常性を示し ている。大体のケースにおいて定常解が得られたが、一 部のケースでは定常解を得ることができなかった。し かしながらそれら非定常なケースでも周期的もしくは 準周期的な変動が見られた。今回の計算においては時 間精度は考慮していないため、瞬間値に関しては意味 を為さないが、時間平均を取った値はある程度意味が あると考え、非定常なケースにおいては抵抗及び加熱 量の時間平均を取り参考値としてプロットした。そのた め(準)周期的な振動での最大値、最小値をエラーバー で示し、値自体はある一定期間の時間平均した値を示 している。 x_c に関する計算では $E_c = 0.01$ に固定し、 L = 0.1, 0.2, 0.4 の 3 ケースの計算を行った。図 7 に おいて破線は熱源がない場合の値を示している。抵抗 に関しては全ケースで熱源が無い場合より抵抗が減少 していることがわかる。加熱量に関しては xc が小さい ケース (熱源が近い) では逆に増加しているが、ある程 度以上大きくなれば (熱源が離れると) 熱源が無い場合 よりも加熱量が減少することがわかる。また抵抗、加

図 7: x_c による影響

熱量共最初は急激に減少するが、ある程度以上遠ざけ る(半径の14倍)とそれ以上減少しないことがわかる。

図8に抵抗及び加熱量に対するパラメータEcの影響 を示す。この計算では $x_c = 4.0$ に固定している。抵抗 に関しては図 8(a) で表されている様にすべてのケース で抵抗が減少した。また投入エネルギーが増加する程 抵抗は減少し、その減少傾向は L によらず似た傾向と なっている。 $E_c = 10$ といった大量のエネルギーを投 入した場合の計算も行ったが、逆に抵抗は増加した (図 8にはプロットしていない)。しかしながら大量のエネ ルギーを投入する事で流れ場の最大温度が 30.000K を 越え、解析に用いた物理モデルの信頼性に疑問が生じ てくる。そのためそういったケースは解の信頼性に問 題があるとし、議論の対称から除外した。この問題を |含んだ解析ケースが先に表3の中で × 印で示したケー スである。熱源が無い場合と比べて加熱量が減少した ケースが存在した。半球の上流に熱源を設定すれば、加 熱量は一様流のエンタルピの関数であるので一般に半 球が受ける加熱量は増加すると考えられる。しかしな

がら、図8(b)が示す様に適当な量の熱源を設定すれば 逆に加熱量を減少させることができることがわかる。

図9に抵抗及び加熱量に対するパラメータLの影響 を示す。抵抗に関しては図9(a)で表されている様にす べてのケースで抵抗が減少した。Lが大体0.15より大 きくなるとLが増加するにつれて抵抗も増加している。 一方Lが0.15より小さくなると(これは熱源がより集 中している事を意味する)、Lによる影響が小さくなっ ている、つまりLによらず抵抗は一定値のままである か若干増加している。つまり $E_c \leq 0.05$ に対しては抵 抗が最小となるLの値が存在している。図9(b)より熱 源が無い場合と比べて加熱量が減少するLの範囲が存 在し、それぞれの E_c の値に対して加熱量が最小となる Lの値が存在することがわかる。Lが増加するという ことは熱源が広く分散していく事を意味し、一様流へ 与える影響が段々小さくなり、最終的には熱源が無い 場合に漸近していく事を意味する。

x_c = 4.0 に固定したグループ II の計算において抵抗、 加熱量、及びそれらの和が最小になったケースを表4 に

図 9: L による影響

示す。 $L = 0.4, E_c = 1.0$ の時抵抗が最小となり熱源が 無い場合の 23% となった。また、 $L = 0.25, E_c = 0.05$ の時加熱量が最小となり 74% となった。 $L = 0.2, E_c = 0.05$ の時式 6 で定義される抵抗、加熱量の和が最小に なり 58% となった。

4. おわりに

Directed Energy Air Spike を含んだ流れを高温効果 を考慮した数値計算を用いて解析し空力抵抗、空力加 熱共に減少することを確認した。DEASを制御するパ ラメータを導入し、各パラメータによる流れ場の変化 及び空力抵抗、空力加熱への影響が判明した。熱源位 置を遠ざける程抵抗、加熱量ともに単調に減少するが、 ある程度以上離すとそれ以上は減少しないことがわかっ た。投入エネルギを増やして行くと抵抗、加熱量ともに 単調に減少するが、ある程度以上のエネルギを投入す ると加熱量は逆に増加することがわかった。熱源の分 布半径を小さくしていくと抵抗は減少して行くが、あ

表 4: それぞれの最小値を与える条件

L	E_c	C_D/C_{D0}	\dot{Q}/\dot{Q}_0	$\frac{1}{2}(\dot{Q}/\dot{Q}_0 + C_D/C_{D0})$
0.4	1.0	<u>0.226</u>	2.121	1.173
0.25	0.05	0.455	<u>0.741</u>	0.598
0.2	0.05	0.372	0.796	0.584

る程度以上小さくするとそれ以上減少しないか若干増 加する。また加熱量に関してはそれぞれの投入エネル ギの量に応じて加熱量が最小となる分布半径が存在す ることがわかった。

参考文献

- S. Bogdonoff and I. Vas. Preliminary investigations of spiked bodies at hypersonic speeds. *Journal of Aerospace Sciences*, Vol. 26, No. 2, pp. 65– 74, 1959.
- 2) L.N. Myrabo and Y.P. Raizer. Laser-induced air spike for advanced transatmospheric vehicles. AIAA paper 94-2451, June 1994. http://wwwaero.meche.rpi.edu/Research/DEAS/.
- V.I. Golovitchev and J. Hansson. Some trends in improving hypersonic vehicles aerodynamics and propulsion. In *Proceedings of 14th International* Symposium on Air-breathing Engines, 1998.
- F. Marconi. An investigation of tailored upstream heating for sonic boom and drag reduction. AIAA Paper 98-0333, January 1998.
- 5) V.A. Levin and L.A. Terentéva. Supersonic flow over a cone with heat release in the neighborhood of the apex. Rossijskaya Akademiya Nauk, Izvestiya, Mekhanika Zhidkosti i Gaza 2, March 1993.
- 6) D. Riggins, H.F. Nelson, and E. Johnson. Bluntbody wave drag reduction using focused energy deposition. *AIAA Journal*, Vol. 37, No. 4, pp. 460– 467, April 1999. See also AIAA Paper 98-1647, Apr.
- R. Takaki and Y. Wada. Numerical simulation of high enthalpy flow - high enthalpy flow workshop -. In Proceedings of 13th NAL Symposium on Aircraft Computational Aerodynamics - High Enthalpy Flow Workshop -, pp. 171–177. NAL SP-29, 1996.
- 8) C. Park. Assessment of a two-temperature kinetic model for dissociating and weakly-ionizing nitrogen. *Journal of Thermophysics and Heat Transfer*, Vol. 2, No. 1, pp. 8–16, 1988. See also AIAA Paper 86-1347, Jun.

9) Y. Wada and M.S. Liou. A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA Paper 94-0083, January 1994.