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Abstract
In order to clarify the fundamental

mechanism of the hovering flight of a dragonfly,
the numerical simulation of unsteady viscous flow
around a tandem airfoil configuration oscillating
in still air has been conducted by using a two-
dimensional Navier-Stokes code. It is shown
that the mutual flow interactions between the
fore- and hind-airfoils are playing the dominant
role in generating the time mean aerodynamic
force acting in the direction of the stroke plane,
which is indispensable for the dragonfly to hover
with the body axis horizontal. The total amounts
of the lifting force and the necessary power are
also estimated and shown to be very close to those
estimated by other researchers. Some additional
numerical simulations and discussions are also
presented to explain why a true hover-fly that has,
in contrast with a dragonfly, only a pair of wings
can also hover with the body axis horizontal.

Introduction
Dragonfly can hover with the body axis

almost horizontal1. The mechanism of this has
not yet been well understood, though many
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experimental 2~4 and theoretical 5"9

investigations have been conducted so far. These
theoretical studies have been concentrated on
quasi-steady or unsteady aerodynamics of a single
airfoil, that is, the effects of the mutual
interactions of the fore and hind wings have been
completely neglected. According to the
experimental flow visualization study by Somps
and Luttges 2, however, it has been suggested that
the mutual interactions between the vortices
generated by the fore- and hind-wings might be
playing the dominant role in generating the
hovering forces. However, further details of the
vortex interactions and its correlation with the lift
generation mechanism have remained to be
investigated. Recently, the present authors10

presented a numerical method using a Navier-
Stokes code for investigating this mutual
interaction problem. They analyzed the
unsteady viscous flow around a tandem airfoil
configuration at a typical span-wise station of
dragonfly wings, which is oscillating in still air,
by assuming the flow is locally two-dimensional.
They showed that the mutual interaction is
playing the essential role in generating the time
mean aerodynamic force acting in the direction of
the stroke plane, which is indispensable for the
dragonfly to hover with the body axis horizontal.
Although the basic mechanism of the hovering
flight of a dragonfly was disclosed qualitatively in
the analyses, there were some quantitative
deficiencies. Namely, the gap between the fore-
and hind-airfoils was, tentatively, assumed to be
about 10 percent of the airfoil chord and the chord
lengths of the fore- and hind-airfoils were
assumed to be the same. In reality (Anax
parthenope Julius), the gap between the fore- and
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hind-airfoils varies from 20 percent to 140 percent
chord length of the fore-airfoil depending on the
span-wise stations, and the chord length of the
hind-airfoil is larger than that of the fore-airfoil
( 100 percent -180 percent of the fore-airfoil
depending on the span-wise station). As to the
airfoil motion, the amplitudes of the pitching
oscillations of both the fore- and hind-airfoils
were assumed to be 40 deg in upward and 10 deg
in downward motions, respectively, at 80 percent
semi-span station in our previous paper (see next
section for the definition of the amplitude of the
pitching oscillation). In reality, the larger
amplitudes are taken both for the fore- and hind-
airfoils by Anax parthenope Julius n (the
quantitative data will be given in Section Iff), The
quantitative deficiency of the results of the
analysis was that the necessary power estimated
for Ig hover was about 43 percent higher than the
available power for Anax parthenope Julius which
is estimated by using the empirical formula12.
This seems to be attributed to the fact that the
amplitudes of the pitching oscillations of the fore-
and hind-airfoils were smaller than those
measured by Azuma and Watanabe11.

In the present paper, these quantitative
deficiencies of our previous analyses have been
removed. For this purpose, the original code has
been improved considerably, especially, in the
grid generation method to cope with the large
pitch amplitudes (max. 65 deg) of the airfoil
oscillations.

II. Method of Analysis

n*!me mean value

the flow around a tandem airfoil configuration at

some typical span-wise station of dragonfly wings

by assuming that the flow is locally two-

dimensional. In Fig. 1, the definitions of the

coordinates and forces are shown. The Y-axis is

taken in the direction of the stroke plane while the

X-axis is taken in the direction perpendicular to

the Y-axis. The fore- and hind-airfoils are

assumed to be oscillating in a coupled heaving

and pitching mode, where the pitching oscillation

advances about 90 deg ahead of the heaving

oscillation11. There is also some phase

difference between the flapping motions of the

fore- and hind-wings. That is, the hind-wing is

flapping about 40 deg phase angle ahead of the

fore-wing (extrapolation from the data taken by

Azuma and Watanabe11 at several non-zero flight

velocities). As to the aerodynamic forces acting

on the dragonfly in hovering flight condition, we

define Ly and Lx (see Fig. 1), that is, Ly is

the mean aerodynamic force ( time mean value

of LY during one cycle of oscillation) acting in

the direction of the Y-axis, and Lx is the

mean aerodynamic force acting in the

negative direction of the X-axis. Then, the

lifting force L^^ which balances with the

body weight can be given by

Fig, 1 Definitions of coordinates and forces

..-.. / 2 —"2
LhaveF = \ Lx 4- Ly . The stroke plane

angle <frs (see Fig. 1) can be given by

$_ = tan \ ). According to the

In the present analysis, we focus attention on
experimental observations by Azuma and
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Watanabe11 of the dragonfly (Anax parthehope

Julius), the value of $s for hovering is estimated

as about 20 deg - 40 deg by the extrapolation

from the data obtained at several finite flight

velocities. In Fig. 2, the definitions of motions of

the tandem airfoil configuration at some typical

span-wise station of dragonfly wings are shown.

The airfoil sections of the two-airfoils are

assumed to be a flat-plate of zero thickness. In

the figure, //, is the displacement of the fore-

airfoil in Y-direction and a, is the angular

displacement of the fore-airfoil, both at the axis of

the pitch, and the similar definitions are also

given to Hh and (Xh for the hind-airfoil. As

discussed previously, these two airfoils are

assumed to be oscillating in a coupled heaving

and pitching motions as follows.

For the fore-airfoil,

H

amplitudes of the pitching oscillations, and &fi

and aki are the mean pitch angles of the fore-

and hind-airfoils, respectively, and H is the
o

mean value of the heaving oscillation of the hind-

airfoil. $y and 0A are the phase advance angles

of the pitching oscillations ahead of the heaving

oscillations of the fore- and hind-airfoils,

respectively. W in Eqs. (3) and (4) is the phase

"f

Fig. 2 Definition of airfoil motion

(l)

advance angle of the heaving oscillation of the

hind-airfoil ahead of the fore-airfoil. In the

above equations, 0) is the circular frequency of

the oscillation and T is time.

a/o

For the hind-airfoil,

(2)

af - ahi + ah0 $in(a)T + W

(3)

(4)

where ///0 and HkQ are the amplitudes of

heaving oscillations, a/0 and afto are the

The compressible Navier-Stokes equations

are applied for the numerical simulations of the

unsteady viscous flows around the tandem airfoils

whose motions are given by Eqs. (1)~(4). All

the physical quantities that appear in Eqs. OH4)

and the Navier-Stokes equations are

nondimesionalized by the maximum heaving

velocity of the fore-airfoil V f , the semi-chord

length of the fore-airfoil bf and the air density

p (see Isogai and Shinmoto11), The maximum

heaving velocity of the fore-airfoil is given as

American Institute of Aeronautics and Astronautics
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(5)

It should be noted that the similarity
parameters that govern the unsteady viscous flow
around the present tandem airfoil configuration in
hover mode are the Reynolds number and the
reduced frequency. The Reynolds number R and
the reduced frequency k are defined by

R "(bfVf)/v

H

(6)

(7)
/o

where v is kinematic viscosity. As seen from
Eq. (7), the reduced frequency k is independent of
CO and equals to the reciprocal of hf This
point seems to be very important when we
consider unsteady aerodynamics of the hovering
flight of insect12. That is, if we assume the
planform of the wing as rectangular, the hf0
which is the dimensionless flapping amplitude of
the typical spanwise section is proportional to the
aspect ratio of the wing. Therefore, this means
that as seen from Eq. (7), the reduced frequency
k is proportional to the reciprocal of the aspect
ratio. Since the reduced frequency is the
parameter which controls the strength of the
unsteadiness of the flow, this point suggests the
following interesting fact, namely, the
unsteadiness of the flow around a flapping high-
aspect-ratio wing is weaker than that of the low-
aspect-ratio wing. As will be discussed later in
this paper, this is the key point to explain why the
dragonfly must utilize the mutual interactions of
the fore- and hind-wings to hover and why the
true hover-fly like Syrphus ribesii can hover by
flapping only a single pair of wings.

In order to construct an appropriate grid
system, a multi-domain method is employed.
The physical space is divided into the four
domains, namely, domain I, II, III and IV, as
shown in Fig. 3a. Each physical domain, which
moves and deforms with time in accord with the
airfoil motion, is mapped on each corresponding
domain in the computational space as shown in

Fig. 3b. Each of these four domains in
computational space is the rectangular region. A
rectangular grid with a constant grid space is
adapted to each computational domain. (Each
computational domain is mapped on the
corresponding physical domain at each time step
by using the algebraic mapping functions.) The
time differenced form of the GCL (Geometric
Conservation Law)13 coupled with the
conservation form of the Navier-Stokes equations
in each computational space is solved at each time
step. TVD (Total Variation Diminishing)
scheme14 is employed for solving the Navier-
Stokes equations. At the far-field boundaries

QD
HINDAIRFQIL

Fig. 3a Physical spaces

4rjfe-

Fig. 3b Computational spaces

located 50 chord lengths away from the airfoils,
the flow quantities are given by the zeroth order
extrapolation from the inner points. At the
boundary where the united domain of I and II and
that of III and IV are overlapped, the flow
quantities at the grid points of each domain
should be interpolated to exchange the
information since they slide each other in accord
with the airfoil motions in the physical space. At
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the airfoil surfaces, the no slip conditions15 are
given. Total 280x160 grid points are employed
for the whole flow field. For all the flow
computations, Mach number is assumed to be
0.10.

ffl. Dragonfly Model and Results of Simulation

In the present simulation, we take Anax

parthenope Julius as a typical example of a

dragonfly. According to the observation by

Azuma and Watanabe11, the full span length of the

fore-wing is 0.10m, and the aspect ratio is 10. If

we assume the planform of the fore-airfoil is

approximately rectangular, the chord length

0.5R 075R

Fig. 4 Planforms of fore- and hind-
wings

becomes 0.01m. The geometry of the hind-wing

is a little bit different from that of the fore-wing

as shown in Fig. 4. As seen in the figure, the

chord length of the hind-wing is larger than that

of the fore-wing. The gap between the fore- and

hind-wings also varies depending on span-wise

station. In the present study, we focus attention

on the unsteady viscous flow around the tandem

airfoil configuration at 75 percent semi-span

station by assuming the flow is locally two-

dimensional. At 75 percent semi-span station,

the semi-chord lengths of fore- and hind-airfoils

are 0.005 m and 0.0057m, respectively, and the

gap between the fore- and hind-airfoils is 96

percent chord length of the fore-airfoil. Total

mass of the dragonfly is 79xiQ~*Kg. As to

the wing motion during hovering flight, we refer

to the observation by Azuma and Watanabe11.

Although they do not report the data for hovering

flight, the data obtained for the flight velocity of

0.7m/s seems to be very close to those of the

hovering flight. The flapping motions of the

fore- and hind-wings, that are observed at the

flight velocity of 0.7m/s, are shown in Fig. 5.

The flapping frequency is 28 Hz. Thus, the

amplitudes of the heaving oscillations of the fore-

and hind-airfoils at 75 percent semi-span station

become ///0 = 0.024 \m and

/40 = 0.0241m, and Hg becomes 0.0026 m.

The maximum heaving velocity V*, which is the

reference velocity of the nondimensionalization,

becomes 4.24 m/s and the reduced frequency k is

0.207 and the Reynolds number based on V* and

hf is 1.45jcl03. The axis of pitch is assumed

to be located at 25 percent chord point for both

the fore- and hind-airfoils. The amplitude of

pitching oscillation is 64 deg for upward motion

and 40 deg for downward motion for the fore-

airfoil and 51 deg for upward motion and 24 deg

for downward motion for the hind-airfoil. As
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already mentioned, the phase advance angles <f*s

and $h of the pitching oscillations ahead of the
heaving oscillations are both 90 deg. As to the
phase advance angle W of the heaving
oscillation of the hind-airfoil ahead of the fore-

airfoil, we assume 40 deg which is obtained by
extrapolation from the observed data11 obtained at
various flight velocities. We assume that afi

and aki in Eqs. (2) and (4) are zero.

The numerical simulations using the Navier-
Stokes code have been performed for the tandem

Y
A HINDW1NG

FOREWiNG

Z

Fig. 5 Definitions of flapping
motions of the fore- and hind-wings

airfoil configuration thus set. Since one of the
purposes of the present study is to investigate the
role of the flow interactions between the fore- and
hind-airfoils, the flow simulations about the single

airfoil configuration ( the fore-airfoil or the hind-

airfoil only) have also been performed for
comparison with those for the tandem airfoil
configuration.

Since the stroke-plane angle ^ (see Fig. 1)
plays the essential role in discussing the
mechanism of the hovering flight of the dragonfly,
the convergence history of ^ was monitored for

identifying the convergence of the computations
to the periodic solution. It took more than 420
cycles of oscillation to obtain the converged value
of (j)s for the tandem airfoil configuration, and

took about 200 cycles to obtain the converged
values of $>5's for the single airfoil

configurations. The detailed values of the time
mean aerodynamic forces and the mean rate of
work, that are obtained by the present simulations

are as follows:
A) Tandem airfoil configuration (with

interaction)
Fore-airfoil: JLx/ = O.O868AT / m

= 0.0285#/ m
~. = 0375W/ m

Hind-airfoil: Lxh = O.O9O8JV/ m

k=Q.598Wim

Sum of the fore- and hind-airfoils:

0.0594 Nlm

Wt- 0.973 Wlm

B) Single airfoil configuration (the fore-airfoil
only or the hind-airfoil only without

6
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interaction)

Fore-airfoil: = 0.0686W/ m

L y f = 0.0092^7 m

Wf=Q.279W/m

gained by the flow interaction, which is

indispensable for the dragonfly to hover with the

body axis horizontal, is about 260 percent of that

of the single airfoil configuration (without flow

interaction).

Hind-airfoil LXth - 0.0783NJ m
Z^=(X0074Af/m

Wh=OA77W/m

Sum of the fore- and hind-airfoils:

= O.Ol66N/m

The increment of Lhover gained by aerodynamic

interaction is about 27 percent of L^^ obtained

for the single airfoil configuration (without

interaction). Especially, the increase of Ly

In Fig. 6, the variation of Ly and Lx acting

on the fore- and hind-airfoils during one cycle of

oscillation are plotted by the solid line for the

tandem airfoil configuration and by the dotted line

for the single airfoil configuration, respectively.

It can be seen in the figure that both the fore- and

hind-airfoils of the tandem configuration gain

Ly and Lx, (especially Ly ) during

kt—*%~l.2&ft when both airfoils are in

downward motion. The reason for this can be

seen in Fig. 7 where iso-vorticity distributions

around the tandem airfoil configuration at several

phases of the oscillation are plotted.

^ Foreairtoa —— with interact ^ Hindairfo«

°-5*- ——without inteiaction
N/m

0,5;
Foreaktbit — wrthinteractJon Lx Hindairfoi)

— without interaction 0.5
N/m

- with interaction
—— wiflwut intoraction

with interaction
without interaction

Fig. 6 Variations of LY and Lx during one cycle of oscillation
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to = 0.17 ff

If ••=•&:

to = 0.507T

to = 0.67'Tt

Fig. 7 Iso-vorticity distribution around tandem airfoil configuration -continued.

8
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Fig. 7 Iso-vorticity distribution around tandem airfoil configuration -concluded.

In the process of the downward motion, the

strong vortices are generated on the upper

surfaces of the fore- and hind-airfoils, that

produce the strong suction forces. Although the

vortices on the upper surfaces also appear for the

single airfoil configuration in downward motion,

the strength of the vortices seems to be enhanced

for the tandem airfoil configuration by the flow

interactions between the two airfoils.

At this point, it is quite interesting to see

whether the lifting force, Lholer, predicted by the

present numerical simulation can sustain the

weight of the present dragonfly model

(7.74*10" N). In order to estimate the total

hovering force acting on the dragonfly, the

span-wise distribution of Lhover should be given.

In addition to the simulation for 75 percent

semi-span station, we also performed the

simulation for 50 percent semi-span station,

obtaining LAover=0.113 N/m. These values are

plotted by the sign (o) in Fig. 8. By integrating

the solid line we obtain 12.0x10" N as the

total lifting force acting on the full span wings of

the present tandem configuration. Since the

weight of the dragonfly is 7 . 74 JC 10 " 3 N ,

the load factor n becomes n=1.55, and this means

that the dragonfly can sustain its weight.

Similarly, the necessary power for the present

hovering flight can also be estimated.

American Institute of Aeronautics and Astronautics
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In Fig. 9, the span-wise distributions of the mean

rate of work, Wt , are plotted. The results of

the present simulation, that are obtained for 75

percent and 50 percent semi-span stations are

plotted by the sign (o), respectively. By

integrating the curve, we obtain the total

necessary power for the full span wings of the

present tandem configuration as

Pn= 0.0593 W Using these data, the

necessary power for Ig hover11 can be estimated

. P.as The available

power Pa of the insect is usually estimated by

using the following formulae12 (Azuma, 1992):

where mm is the muscular mass of the total mass

m of an insect. When we apply these relations

to the present dragonfly model, the available

power is estimated to be Pa « 0.0514 W, which

is higher than the necessary power of 0.0307W

estimated by the present numerical simulation.

It is also easy to estimate the necessary power for

1 Kg of muscular mass, and it becomes 155 W/Kg,

which is also quite reasonable value compared

with 160W/Kg estimated by Wakeling and

Ellington (1997) for the dragonflies, S.

sanguineum and C. splendens.

0.4

0,3

02

01

OI H^S simulation

0.025 0.05

Fig. 8 Spanwise distribution foLhover

O; N-Ssimulation

0,025 m 0.05 Z

Fig. 9 Spanwise distribution of Wt
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Iv True Hover-Flv Model and Results of

Simulation

As the conclusion of the present numerical

simulations for the present dragonfly model, we

have seen that the flow interaction between the

fore- and hind-wings is playing the dominant role

for generating the time mean force LY , which is

indispensable to keep the body axis horizontal for

hovering flight. It should be noted, however,

that there is a group of insects which have only a

single pair of wings and can also hover with the

body axis horizontal Weis-Fogh1 calls these

insects as "True Hover-Fly". There arises a

question how they generate LY without flow

interaction, which is indispensable to hover the

body axis horizontal. We should answer to this

question. As already described in Section I, the

major points that are different between the true

hover-fly and the dragonfly are as follows: (1) the

aspect ratio of the true hover-fly wing is about

one half of the forewing (or hindwing) of the

dragonfly, (2) the frequency of the flapping

oscillation of the true hover-fly is about 170 Hz

which is about six times larger than that of

dragonfly, and (3) the flapping amplitude of the

true hover-fly is smaller than that of the dragonfly.

From the fact (1) and (3), the reduced frequency

(based on the maximum flapping velocity) of the

true hover-fly at the typical spanwise section is

more than 2 times larger than that of the dragonfly

wing. This means that the unsteady flow field

around the true hover-fly wing might be quite

different from that of the forewing (or hindwing)

of the dragonfly even if we neglect the flow

interactions between them. In this section, we

will present the results of the flow simulation for

a typical true hover-fly model.

For the present simulation, we take Syrphus

ribesii l as a typical example of a true hover-fly

model. The semispan length of the model is

0,0082 m and the chord length is 0.0031 m, and

the full span aspect ratio becomes 5.3. The total

mass of the model is 2.6xlQ~5Kg and the

frequency of oscillation is 167 Hz. The flow

simulation has been performed for the airfoil

motion at the 75% semispan station. The

amplitude of the flapping oscillation about the

body axis is assumed to be 35 deg. Therefore,

the amplitude of the heaving oscillation HQ is

0.00353m, and the semichord length b of the

present 2D model is 0,00155m. The maximum

velocity of the heaving oscillation, which is the

reference velocity for nondimesionalizing the

basic equations, is 3.70m/s. The reduced

frequency is 0.439 and the Reynolds number is

393. The amplitude of the pitching oscillation is

45deg for upward motion and 35 deg for

downward motion. In Fig. 10, the variations of

LY and Lx during one cycle of oscillation is

shown. It should be noted that the relatively

large values of LY and Lx are obtained during

the aft-part of the downward motion

( kt = Jt - 4w n ), where the strong leading edge

11
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separation vortex can be seen on the upper surface

of the airfoil as shown in Fig. 11. The detailed

values of the time mean aerodynamic forces and

mean rate of work that are obtained are as

follows:

x

The stoke plane angle of 32.4 deg means that the

present true hover-fly model can hover with the

body axis horizontal though it has only a single

pair of wings. We can also estimate the total

hovering force acting on the full span wing and

the total necessary power by assuming that the

spanwise distributions of Lhover and Wt can be

expressed by the quadratic and trigonometric

polynomials of Z? respectively10. The total time

mean lifting force and necessary power thus

estimated are 1.99jclO~4JV and

0.819*1 (TV, respectively.

Since the total weight of the present true

hover-fly model is 2.55xW~4N , the load

factor becomes n^O.781. This means that the

predicted aerodynamic force is about 22% less to

sustain its weight. We can also estimate the

necessary power for Ig hover and it becomes

1.19jtlO~3fiT. Since the available power

estimated by using the empirical formula12 is

1.69.rlO~ W, the necessary power estimated by
the present simulation seems to be reasonable.

We can also estimate the necessary power for

IKg of muscular mass and it becomes

1&2.6W / Kg which is also reasonable

compared with that estimated by other

researchers9.

0.2
N/m

QJ

-0.1

Fig. 10 Variation of LY and Lx during one cycle of oscillation

12
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fa = 0.17*

kt = 0.33*

kt = 0.50JZ-

fa = 0.83*

fa = 1.17*

fa = 0.67* fa = 1.33*

Fig. 1 la Iso-vorticity distribution around true hover-fly model -continued.

13
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Fig. lib Iso-vorticity distributions around true hover-fly model -concluded.

necessary power are also estimated and shown to

be very close to those estimated by other

V. Conclusion researchers. Some additional numerical

simulations and discussions are also presented to

explain why a true hover-fly that has, in contrast

with a dragonfly, only a pair of wings can also

hover with the body axis horizontal.

In order to clarify the fundamental

mechanism of the hovering flight of a dragonfly,

the numerical simulation of unsteady viscous flow

around a tandem airfoil configuration oscillating

in still air has been conducted by using a

two-dimensional Navier-Stokes code. It is

shown that the mutual flow interactions between

the fore- and hind-airfoils are playing the

dominant role in generating the time mean

aerodynamic force acting in*the direction of the

stroke plane, which is indispensable for the

dragonfly to hover with the body axis horizontal.

The total amounts of the lifting force and the
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