IV

HEEEN

0000 O High Performance Fortran 00 00000 2.0 (0 I 000 ITO0O0OO)
O00oooOoooooO (0 III0000)O0O0O0OoOODODOOO0OOODODOOOODODOO
oboobobooouboooobooboodo HPFOODODODOODODDO

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

OO0O0A 0000

00000000 High Performance Fortran0 000000000000 CODOOOOOOO

A2 0O0O0O0OOO

A22 000000

H201 hpf-directive-line is directive-origin hpf-directive
H202 directive-origin is !'HPF$
or CHPF$
or *HPF$
H203 hpf-directive is specification-directive
or ezecutable-directive
H204 specification-directive is processors-directive
or align-directive
or distribute-directive
or inherit-directive
or template-directive
or combined-directive
or sequence-directive
H205 ezecutable-directive is independent-directive
O0: hpf-directive-line 00 000000000 O00O0O
O0: specification-directive D 00 0 O O (declaration-construct) D 00000000000
ooooooo
O00: executable-directived 00 0 OO (executable-construct) D 000000000000
oooooo
O0: hpf-directive-line 0 00 00 000000000000 OCOOOFortrandO000OO0

(F95:3.3.1.1)0 000000 (F95:3.3.2.1) 0 000000000000 DO 0OO(F95:3.3)

267

H206 specification-directive-extended 1is

H207 ezecutable-directive-extended

H208 ezecutable-construct-extended

A3 0O0OO0OO0OO0OOOO

or
or
or
or
or
or
or
or
or
or

is

or
or
or
or
is

or
or
or
or
or
or
or

processors-directive
subset-directive
align-directive
distribute-directive
inherit-directive
template-directive
combined-directive
sequence-directive
dynamic-directive
range-directive

shadow-directive

independent-directive
realign-directive
redistribute-directive
on-directive

resident-directive

action-stmt
case-construct
do-construct
if-construct
where-construct
on-construct
resident-construct

task-region-construct

A32 JU0O0O0O0O0OOOOOOOOOODO

H301 combined-directive

H302 combined-attribute

H303 combined-decl

is
is
or
or
or
or
or
is
or

combined-attribute-list : :

ALIGN align-attribute-stuff
DISTRIBUTE dist-attribute-stuff

INHERIT
TEMPLATE
PROCESSORS

DIMENSION (ezplicit-shape-spec-list)

hpf-entity [(exzplicit-shape-spec-list)]

object-name

combined-decl-list

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H304

goo0:

oo0:

hpf-entity is processors-name

or template-name

OO0 000 ecombined-attributed OO OO combined-directive D0 200000000
ooooo

DIMENSION O OO combined-directive D 0D DO 000D O0O0O0O0OOODOOOOOO
UO0OD0O OHPFO TEMPLATE [0 PROCESSORSU D0 DOO0O0OODOODOOOOODOO

A.3.3 DISTRIBUTEUOOO

H305
H306
H307

H308

H309

H310

H311
H312

goo0:

goo0:

goo0:

gao:

oo0:

oo:

distribute-directive is DISTRIBUTE distributee dist-directive-stuff
dist-directive-stuff is dist-format-clause [dist-onto-clause |
dist-attribute-stuff is dist-directive-stuff

or dist-onto-clause

distributee is object-name

or template-name

dist-format-clause is (dist-format-list)
or * (dist-format-list)
or *

dist-format is BLOCK [(scalar-int-ezpr) |
or CYCLIC [(scalar-int-expr) |
or *

dist-onto-clause is ONTO dist-target

dist-target is processors-name

or * processors-name

or *

distributee 0 0 0 0 0 O (object-name) 0 00 000000000000 ODOOOOO
000000 (component-name) D 000000000

distributee 0 0 00 00O (object-name) O O alignee0 00000000 O
distributee 0 0 0 0 0 O (object-name) 0 OPOINTERO OO O OO OOOOOOO
distributee 0 0 00 00O (object-name) O OTARGETO OO D ODODOOOOOODO

distributee 0 0 000 0000 Odist-format-tist(0 00000 00000)00000O
O0O0D00DOO0b0O0O00000o0OOd ddist-format-claused “” 00000000
goodgd

dist-format-list 0 0000000000000 OODOO distributee1 0000000
ubogooogddyd

goo0:

oo0:

oo:

goo0:

dist-format-list 0 dist-target 0000 0000000 0“” 000 dist-format-list O
oo oooooooood

dist-format-list 0 0 O dist-target 0 0000000000000 distributeeD 000
0000000 0DDo00o00oooooooooooooo

DISTRIBUTE O O O O O dist-format-clause 0 O O dist-target 00 OO0 00 “" 000
000000000 distributeeD 00 DOO0O0O0O0O0OOCOOO

DISTRIBUTE 0O O O O dist-format OO0 O O 0O (scalar-int-expr) 0 OO0 00000
(specification-ezpr) 00 00000000

A.3.4 ALIGN OO0

H313
H314
H315
H316
H317

H318

go:

gao:

goo0:

oo0:

gao:

gao:

ao:

ao:

H319
H320

align-directive is ALIGN alignee align-directive-stuff
align-directive-stuff is (align-source-list) align-with-clause
align-attribute-stuff is [(align-source-list) | align-with-clause
alignee is object-name
align-source is

or *

or align-dummy

align-dummy is scalar-int-variable

alignee 0 0 0 0 00O (object-name) D 000000000000 OODOOOOOOO
00000 (component-name) D0 00000000

alignee 0 0 00 00O (object-name) O O distributee 0 00000000 O
alignee 0 0 00 0O (object-name) D OPOINTERO 0O D O0O0OOOOOOO
alignee 0 0 00 0O (object-name) D OTARGETU OO D OO UODOOOOODO

alignee 0 00000 00O O align-source-list (0000000000 O0)0000O0O
O0000o0oo00o0oooooooooooooooo

align-source-st D OO0 OO0 00D O00O0ODOO alignee00000O0DODOODOODOO
oood

align-dummyO0 0000000000 OCOODOOOO
U000 INHERITUOO ALIGND OO DOOOOODOOOOO0O0O0O0

align-with-clause is WITH align-spec

align-spec is align-target [(align-subscript-list) |
or x align-target [(align-subscript-list) |

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H321

H322

H323

H324

H325

H326
H327
H328

go:

gao:

gao:

gao:

goa:

goo0:

gao:

gao:

oo0:

oo0:

align-target is

or
align-subscript is
or
or
or
align-subscript-use is
or
align-add-operand is
or
align-primary is
or
int-add-operand is
int-mult-operand is
int-level-two-expr is

object-name

template-name

int-expr

align-subscript-use

subscript-triplet

*

[[int-level-two-expr | add-op |
align-add-operand

align-subscript-use add-op int-add-operand

[int-add-operand * | align-primary

align-add-operand * int-mult-operand

align-dummy

(align-subscript-use)
add-operand
mult-operand

level-2-expr

align-target 0 0 00 00O (object-name) D 0000000000000 OOOOOO
0000000 (component-name) DO OO0D0OO0O0DODODO

align-target 0 0 OPTIONALO OO OODOOODODOOOO

ALIGNO OO0 align-spec 0 “¥” 0000000 0O0OO0DOO aligneed 000000

goooooo

align-directive 0 0 0 0 O (int-ezpr)0 int-level-two-exprD int-add-operand O 00 int-
mult-operand D OO O0O0O0OO0O0O0OOOOO

align-directive O O align-subscript 0 0 0 00 00O (subscript-triplet) O O O (sub-
seript) DO D0 (stride) 0 000 00000000000

align-subscript-list 00 OO0 OO0 align-dummyO0 001 0000000000000

align-subscript-use 10 0 O align-dummy 0 001 0000000000000

align-dummy 00 0000 O scalar-int-variable D 000000000 DO0OODOOO
0000000 align-spec 000000000000 D0O0OODODODOOOOOO align-
dummy O O align-dummy 0000000000000 0OOO0O0ODODOOOOO0O0O
O O align-subscript-use 0 0 000000000 O

align-subscript 0 0 0 O (subscript) 00 000 O O align-dummyD0 000000000

int-add-operand, int-mult-operand O O 0O int-level-two-expr O 00 000000 0OO

gogn

A.3.6 PROCESSORSOOQO

H329 processors-directive

H330 processors-decl

A.3.7 TEMPLATEOOO
H331 template-directive

H332 template-decl

A38 O0OOOODODOODO

H333 sequence-directive

H334 association-name

is

is

is

is

is
or
is
or

PROCESSORS processors-decl-list

processors-name

[C explicit-shape-spec-list) |

TEMPLATE template-decl-list

template-name | (explicit-shape-spec-list)]

SEQUENCE [[:: | association-name-list]
NO SEQUENCE [[::] association-name-list |

object-name

/ [common-block-name | /

O0: 000000000000 D00000o000o0Ooonooadod Osequence-directive
0d0oooOoooooooboooon

O0: association-name-list 0 0 O sequence-directive 0 OO0 OO0 0000 O0O0OOOO0O

ugd

A4 0O0OU0O0OO0ODOODODOOOOODOOO

A44 OO

H401 inherit-directive
H402 inheritee

is

is

INHERIT inheritee-list

object-name

O0O: wmheriteel 00 0O0OOOODODOODOOO

O0O: eheriteeld alignee0 000000000

O0: wnheriteed distributee 0000000000

A.5 INDEPENDENTOOOOOOOOOOO

A.5.1 INDEPENDENT[OOQ

H501 independent-directive

is

INDEPENDENT [, new-clause]
[, reduction-clause]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H502

H503

H504

goo0:

goo0:

goo0:

oo:

goa:

oo0:

oo0:

new-clause is NEW (wariable-name-list)
reduction-clause is REDUCTION (reduction-variable-list)

reduction-variable is array-variable-name
or scalar-variable-name

or structure-component

independent-directive 0 D0 000000 00O O do-stmtd forall-stmt0 O 0 O forall-
construct0 00 OO 0O0OOOO

independent-directive D DD 00000000 do-stmtO0 000000000 do-vari-
able0 00O loop-control 00 OO0 0O DOOO0OOODOOOO

NEWO OUOO REDUCTIONL O DO DUOOODODODOOOOOOOON do-stmtO O
gboooooon

NEWO DOOO REDUCTIONU DO OUODO wareble D0 DO O ODOODOOOOOOOO
gbboogobaoobgdgd

o 1010

e SAVEUDUUDO TARGETU U D DOOOU

o COMMOND OO OOODLOOUODODO

e EQUIVALENCEL U UODOODOOUOODOOOOOOOOOOO
o OO OLIOOMO

o OO OLIOOMO

o JODOOUDLDOOUODLOLOOOOOOLDOUODLOO

reduction-variable OO O OO0 0000 OO0 4ndependent-directive 1 new-clause O
000000000 diindependent-directived 00000000 do-stmtd forall-stmt
00 forall-construct 0000 (D0D00D0O0DU0O0ODO0ODOOOO0OOO)O new-clause
00 reduction-clause D 00O O0OOODODOO

reduction-variable 0 O structure-component 0 [subscript-section-list 0 00 00 OO
ooo

reduction-variehle) 00 0000 00000000000 DO0OOOOOOOOO
CHARACTERO OO DODODOOOODOO

000 reduction-var

H505

H506

goo0:

A.6

reduction-stmt is
or
or
or
or
or
or
or
or
or
or
or

reduction-function is
or
or
or
or

reduction-stmt 0 O wvariabled 200
ooooo

gbobooboon

A6.2 OOOOODOOOOOO

H601

H602

H603
H604

goo0:

H605

function-stmt is
subroutine-stmt is
prefix is
prefiz-spec is
or
or
or
or

oobO HPFODOOOOOODODOO

variable = wvariable mult-op mult-operand
variable = add-operand * wvariable
variable = wvariable add-op add-operand
variable = level-2-expr + wvariable

variable = wvariable and-op and-operand
variable = and-operand and-op variable
variable = wvariable or-op or-operand
variable = or-operand or-op wariable
variable = wvariable equiv-op equiv-operand

variable = equiv-operand equiv-op variable

11

variable = reduction-function (variable , expr)’

. . . . 13
variable = reduction-function (expr , wvariable)4
1

MAX
MIN
IAND
IOR
IEOR

gbooooob 20000000000000

[prefiz | FUNCTION function-name
([dummy-arg-name-list |)
[RESULT (result-name) |

[prefiz | SUBROUTINE subroutine-name
[C [dummy-arg-list |)]

prefiz-spec | prefiz-spec | ...

type-spec
RECURSIVE
PURE
ELEMENTAL

extrinsic-prefizc

gboobobooooooobobbobod

gbogobdouoooooboboobouooobobooboooooobooobooon
gooogboboobbooboooboooog

program-stmt is

[extrinsic-prefiz | PROGRAM program-name

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H606
H607

go:

goo0:

H608
H609

H610

H611

H612

H613

goo0:

oo0:

gao:

module-stmt is [extrinsic-prefix | MODULE module-name

block-data-stmt is [extrinsic-prefiz | BLOCK DATA
[block-data-name |

oob HHPFOOOODODDOODOODODOODOOOOOO0O0OODOODbOOOODOn
gboobouogodgooboooboboboooboboouoboobooboooobn
gooboobobbooobobooboobooooo

HPFOOUOOOOODODDODODOOODODOOOObOOoOobOoOboooooooooobo
goboooboooobobobooboooooooboboooobobooooboobo
gobogobuobgoguoboboobbobbobooobooobogbo

extrinsic-prefiz is EXTRINSIC (extrinsic-spec)

extrinsic-spec is extrinsic-spec-arg-list
or extrinsic-kind-keyword

extrinsic-spec-arg is language
or model
or ezternal-name

language is [LANGUAGE = |

scalar-char-initialization-expr

model is [MODEL = |

scalar-char-initialization-expr

external-name is [EXTERNAL_NAME =]
scalar-char-initialization-expr

extrinsic-spec-arg-list 0 0 0 O O languageld model0 0 O 0 O external-name 0 00 O
00 10000000000000000000 2000000000000000

00O OLANGUAGE=0O OO OO language OO 00O OO OlanguageD extrinsic-spec-arg-
LstOO0D0O0O0D0O0O0O000D0DODOODOO00OMODEL=00000 medelDODOOODO
0 OLANGUAGE=U O O language extrinsic-spec-arg-list 0 D 0 OO OO0 OO Omodel
0200000000000000000 UEXTERNAL NAME=[0 0000 external-name
0000000 0OLANGUAGE=0O O O language O extrinsic-spec-arg-list 01 0 000 00O
OO0OOOMODEL=000 modeld 200000000000000O0

LANGUAGE=UMODEL=UEXTERNAL NAME=U U OO0 000000000 0000004
gooooboooooboboboon

U000 extrinsic-spec-arg-list0 D0 OO OO OOO OO EXTRINSICU [LANGUAGEL
MODELOJEXTERNALNAMEOD OO OOOOOO OPTIONALO O OO OO dummy-arg-list
ooooooooooooooooobbobbOoboboobboobooooooDo
oo0o

goo0:

gao:

goo0:

goo:

oo0:

oo0:

H614

goo0:

language 0 O O O O char-initialization-expr 0 0D 0000000 0D0ODOO0O

e 'HPF' ODHPFOOOODODOODO modelCODDOODOOOOODOOODOOmodel
gO'eLoBAL'D OO0 DOOOOOO

e 'FORTRAN' ANSIO OO ISOOOO Fortran D 0O OO0O0OOO modelO OO OO
O000000000OmodelD0O 'SERIAL'O 0O DO OOOOOO

e 'F77T' 000 ANSIOODO ISOOODODODO FORTRAN 77000 OOOONO model
OD0O0000000DO00C00O0Omodel0O 'SERIAL'O0OO00OOOOOODO

e 'C'ANSIOOCO COOOOOOOO modelDODODOOOOODOODDODODOODO
modelJ 00 'SERIAL'0 0D DO DOOODODOO

OO00O0000000 medelDDODODOOOO

00000000000 0'c'0000000Ud (interface-body) 00 0O OO O FUNC-
TIONDODO SUBROUTINEOOODOODOOOOOOOOOOODOOO

language D OO0 O00DOO0ODOOO0OOO0ODOOCOOOOOOOOOOODO

model 0 O O 0O O char-initialization-expr D 00 DD 00000 0ODODOO0O

e 'GLOBAL' DD UOUOUOOOOOON
e 'LOCAL' OO DODOOOODOO

e 'SERIAL' DUDUOODUOOOON
gboooooo

modelJ DO 00O OOlanguege 0 OO0 DODOOOOD0OOO0OOOOOOOOOODO
gbogoboobodgd

O00 HPFO 30000000000 languageOO modelU DO DD OODOODOODO
gbbobbobobobbbooboobooboouooboobooo

external-name] O O O O scalar-char-initialization-expr 000 000 D0 O0OO0DOO0OO
0000000000000 0000000000000D0 Oezternal-namel OO0
000 CcCOOO00oooooOooDO0DDOO0bOo00OO0bOOoooOOoDOoooooooO
goooooooboboooobobobbObObOOOo0bo cboboboooobooboo
000000000000 D00000000000 ezternal-neme0 0000000
oooooooooooooooo

extrinsic-kind-keyword is HPF
or HPF_LOCAL
or HPF_SERTAL

EXTRINSIC(HPF) O EXTRINSIC('HPF','GLOBAL') 0 0O 0O OO extrinsic-prefiz O
000000 oOO0OHPFOOOOOOOODDODDODOOOODOODODO HPFOODOOOO
000000000 OOO0OHPFOODODODODOOOD OEXTRINSIC(HPF) ODOOO

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

gao:

go:

go:

A.8

EXTRINSIC('HPF', GLOBAL'") D0 U0U00OUODDOUOO0OO0ODOOO0OUOODOOOODO
gbobobgbuboboboooobbboboobbobboobbobooboboobo
gooooggaddy

EXTRINSIC(HPF LOCAL) O EXTRINSIC('HPF','LOCAL")) 00 O0D0O00OO0OOCOOOO
HPFLOCALO DO DOODODOOO0O0O0oouooobbD sprOD0D0D0OO0DOODO0O
gbobbuodoooobboobbuobboouooboobboooboboooab
U HPF LocALO OO ODUOououoauouuooouoaoon

EXTRINSIC(HPF_SERIAL) 00 EXTRINSIC('HPF','SERIAL') 0O00OOOOODODODOO
HPF SERIALOUOU0O0O00D0ODO0OD0O0OO00OO0O000 HPFOOO0O0O0O0DOO0O0O
ugbooogbbobobuooooobboobaoboobbooboboooobbobboobn
UO0 HPF SERIAL U OO UOOOOOOOOODOOOOOO400

OO0 HHPFOOOODOOODODODOO extrinsic-kind-keyword 0 OO0 OO0 OO0 ODOOO
oo0ooogoooooDooooooooooooooooog

goobbbooouoogoon

AS82 [JUOOODOOOOOOOODODODOOOO

H801 combined-attribute-extended is ALIGN align-attribute-stuff

go:

or DISTRIBUTE dist-attribute-stuff

or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION (ezplicit-shape-spec-list)
or DYNAMIC

or RANGE range-attr-stuff

or SHADOW shadow-attr-stuff

or SUBSET

SUBSETU OO OO OOO0OO0OO0OO0O0ObOOOOnoOn

A.8.3 REDISTRIBUTEO OO

H802 redistribute-directive is REDISTRIBUTE distributee dist-directive-stuff

goo0:

goo0:

or REDISTRIBUTE dist-attribute-stuff ::
distributee-list

REDISTRIBUTED 000 00 O distributee D ODYNAMICO OO OO0 00000000
(850 00)O

REDISTRIBUTE U [0 O O distributee U O ALIGN O OO REALIGNO OO O alignee 1O
gooooboobobod

O 0O: REDISTRIBUTED OO0 dist-format-clause O dist-target D0 OO D0 O0“" 00000
oooooo

A.8.4 REALIGNOOO

H803 realign-directive is REALIGN alignee align-directive-stuff
or REALIGN align-attribute-stuff :: alignee-list

O00: REALIGN OO OO D00 O alignee D ODYNAMICO 0O DO O0OD0O00O0000 (850
00)0

O0: align-with-clause 0 OO0 00 O align-targetd DYNAMICO OO O 0O OO O alignee 0 O
OO dyNAMICOODODOODODOODOOODO

O0O: REALIGNO O OO alignee 0 ODISTRIBUTE OO REDISTRIBUTE O O O O distributee O
ooooogooon

A.8.5 DYNAMICOOD

H804 dynamic-directive is DYNAMIC alignee-or-distributee-list

H805 alignee-or-distributee is alignee

or distributee

gb: DOogoooodobobOoObyNAMICOODODUOUOOOOOOO0O00O0 ODYNAMICO ODOU
0(000000000)000000000000D(@OD0D0D0DO0DUUODODOOO
000000000000 0O00O00O0O0DOO0O0ODOOoOoUbOOOOoDOoOoOooOon)

O0: 0000000 OPOINTERUODODOOOODDO DYNAMICOODOODOODOOODOOO(O
0000890000 UDDODODO)

OO0: SAVEO OO ODOOODODYNAMICODODOODOODDODOODOODYNAMICOODOO
0 (CoO0o0ob0ooo0)00o0ooooooOoooo

AS8.7 OD0O0OODLOODOODOODOO

H806 eztended-dist-target is processors-name [(section-subscript-list) |

or * processors-name [(section-subscript-list) |

or x

O0: 00000000 (section-subscript-list) 00 00 000 (section-subscript) O OO
00000 (vector-subseript) 00000000000 (subseript) 0O O0O0ODODO
(subscript-triplet)y 0000000000

O0: O0D0O00O000 (section-subscript-listy D0 0000000 (section-subscript) 0 O
U O processor-name 0 00 OO0 00 O00O00O0O0OODODOO

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

goo0:

goo:

gao:

oo0:

oo0:

gao:

DISTRIBUTED U OO OODUOOODOOOOOOOOO (section-subseript) 0 0000
(specification-ezpr) D 000000000

DISTRIBUTE[D OO REDISTRIBUTEO OO0 O 0O OO Odist-format-list O dist-targetd O O
000000000000 dist-format-list 0000000000000 0OODOO
00000000 (subscript-triplety 00000 0000000000

DISTRIBUTEO OO REDISTRIBUTED O 0O 0O OO Odist-format-list0 O O dist-target O
0000000000000 distribute 10000 000000000000 0OO0O
0000 (subscript-triplet) 000000000000 OOO

DISTRIBUTE O O O O O dist-format-clause 0 O O dist-target 00 OO0 00 “" 000
000000000 distributee O O distributee] POINTERO 000000000 M
ooooooDpDoOoooo

ALIGN O O OO align-spec O “” 000000 00O0ODOODO alignee O O
alignee] POINTERO OO OO0 00000 M O0O00O0O0OOOOOOOO

inheritee d O aligneed POINTER OO0 DO 0000 MMIO0O0O00O0OCOOOOOOD

AS8Y9 0O00O0O0OO0OOODOO

H807 distributee-extended is object-name

goo0:

goo0:

goo0:

oo0:

goo0:

goo:

or template-name
or component-name

or structure-component

gboboobooboooobbooobbobboooooobobobooooboooon
gogooood

gobooboogoooooobooobobbobooooobobooooooobo
gbooggobobooooooo

DISTRIBUTED O OO distributee] DO 00 OO (structure-component) 0 0 00 0O
goon

O00D00O000000DISTRIBUTEL U OO dustributee l DO D DOOODOOONO
(component-name) D0 00000000

00000000000 DISTRIBUTED U OO 00D Odistributee0 0 0 0O (component-
neme) 0000000000

REDISTRIBUTEL D OO OO OO distributee D DO D ODODDODOOODOOODODOOO
000000000000 00000Q0O00 (ooO)oooopOoooooUboooOo
gbbooboboooobopyNaMICOOODOODDODDOODDOOOO

H808

go:

ao:

ao:

goa:

goa:

ao:

H809

go:

ao:

alignee-extended is object-name
or component-name

or structure-component

gbboobobooobboobbobbooooooboboboooboooon
gooooood

gbbobobuooouoooboobooobobbbuoooougbooboooouooon
gbooooboboooboo

ALIGNO OO0 alignee0 D000 00O (structure-component) 0000000000

00000000000 ALIGNO OO0 aligneeD OODODODOO0OODOO (component-
neme) 0000000000

00000000000 ALIGNDOOOOOOOaligneed 000 (component-name)
uoooooboboad

REALIGNO O OO OODODO alignee0 00000 (structure-component) 0 00000
00000000 oO00oOoO0OO000DOOooOoCoUO0OD (oooD)oooooOooo
ooooooooboobboogooopyNnaMICOOOODOoooooooooooo

align-target-extended is object-name
or template-name
or component-name
or structure-component

00000000000 ALIGNODODOODOOOOOOOOOOO (component-name)
coboboobooo

align-target 0 00 0 0 0O (structure-component) 00000000000 OCOOOO
000000000 (o0D)0D0oUooUoOUOoOoOOd

A8.10 OOOOOOO

H810

goo0:

goo0:

extended-dist-format is BLOCK [(int-ezpr) |
or CYCLIC [(int-expr)]
or GEN_BLOCK (int-array)
or INDIRECT (int-array)

or x

DISTRIBUTED O O OO0 REDISTRIBUTED O OO extended-dist-formaet0 00 00O O
00000 (int-erray) 000000000000 DOCOOOOOODOO

DISTRIBUTEU 0 00O extended-dist-format0 0000000000 (int-array) 0 OO
00 (restricted-expr) 0000000000

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

goo0:

oo0:

GENBLOCKO DD UDOOODOOOO (imt-arrey) 00000 0O0DO0O0ODOODOOODO
guobooobooboooboboobbogoo

INDIRECTU OO OO OOODOOO (int-errey) 00000 00000000000 dis-
tributee 0 000 0D0O0OO0OOO0OOOOOOOOODODO

A.8.11 RANGEOODO

H811
H812

H813
H814
H815

H816

goo0:

go:

oo0:

range-directive is RANGE ranger range-attr-stuff

ranger is object-name

or template-name

range-attr-stuff is range-distribution-list
range-distribution is (range-attr-list)
range-attr is range-dist-format

or ALL
range-dist-format is BLOCK [() |

or CYCLIC [()]
or GEN _BLOCK
or INDIRECT

or *

gooooooobobboooobobooobboooo

e ranger] DYNAMICUO OO OOO
e ranger] INHERITU OO OO O

e rangerd DISTRIBUTEO O OO combined-directive 0 OO 00 OO O dist-format-
claused x00 0 0O O

range-attr-ist O 0000000 Orenger D00 O00D0DO00OO0OODOOODOODOO

ranger] ALIGNO OO OO DO REALIGNO O OO alignee0 0D 0O00O0O0ODODO

A.8.12 SHADOW 000

H817
H818

H819
H820

shadow-directive is SHADOW shadow-target shadow-attr-stuff

shadow-target is object-name

or component-name
shadow-attr-stuff is (shadow-spec-list)

shadow-spec is width
or low-width : high-width

H821 width is int-expr
H822 low-width is int-ezpr

H823 high-width is int-expr

O00: widthD low-width OO0 O high-width 00 0000000 (int-expr) 00000000
00000 (specification-ezpr) DO0O00O000O0DO0O

A9 0OO0OOO0O0OODbDOOOoOooboOooDOoo

A9.1 OOOODOODOOO

H901 subset-directive is SUBSET processors-name

A9.2 ONOOO

H902 on-directive is ON on-stuff
H903 on-stuff is home [, resident-clause | [, new-clause |
H904 on-construct is

directive-origin block-on-directive
block

directive-origin end-on-directive

H905 block-on-directive is ON on-stuff BEGIN
H906 end-on-directive is END ON
H907 home is HOME (wvariable)

or HOME (template-elmt)
or (processors-elmt)

H908 template-elmt is template-name [(section-subscript-list) |

H909 processors-elmt is processors-name [(section-subscript-list) |

A.9.3 RESIDENTOOOOOOODO

H910 resident-clause is RESIDENT resident-stuff
H911 resident-stuff is [(res-object-list) |
H912 resident-directive is RESIDENT resident-stuff
H913 resident-construct is

directive-origin block-resident-directive
block

directive-origin end-resident-directive

H914 block-resident-directive is RESIDENT resident-stuff BEGIN

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H915 end-resident-directive is END RESIDENT

H916 res-object is object

A.9.4 TASK REGIONOQO

HI17 task-region-construct is
directive-origin block-task-region-directive
block
directive-origin end-task-region-directive
HI918 block-task-region-directive is TASK_REGION
H919 end-task-region-directive is END TASK_REGION

A.10 ODO0OO0OOOoODOoODbOoOoOO

or ASYNCHRONOUS

or ID = scalar-default-int-variable
or ASYNCHRONQUS

UO: ASYNCHRONOUSU OO OO ID=000000UO0O00O0DOODO0O0OO0O0O00bO0O00
gogoboooooo

UO: ASYNCHROUNOUS U O OOOODOOOOREC=UOOOOOOODOOO0OO0OO0O0OO0000
gbooboboboougbboooboobooboboboboobooo

O0O: ASYNCHRONOUS D O OO ODODOOOOODOOO0OO0ODOOODbOOooobooooDon
gboboobuoaoon

or ID = scalar-default-int-variable
or PENDING = scalar-default-logical-variable

Ub: INQUIREO OO FILE=QOUOUOUOUOUOO0OO0OO0O0DOID=U000 PENDING=UDO OO ODOU
googoon

gb: Ip=00000 PENDING=UDO U OO UODOOOOUOOODLOO0O00O0000004a0a0d
gbooogooon

A.10.1 WAITO

H1001 wast-stmt is WAIT (wait-spec-list)

H1002 wasit-spec is UNIT = io-unit
or ID = scalar-default-int-expr
or ERR = label
or IOSTAT = label

goo0:

A.11 HPFOOODODOODOOOODO

wait-spec-list D0 OUNIT=0 0 000000 100ID=00000000 100000

gboobooobol1oooooboobboboo

A.11.2 OJ0OOOOOO0ODOO

H1101 type-declaration-stmt-extended 1is

H1102 attr-spec-extended is

or
or
or
or
or
or
or
or
or
or
or
or
or

H1103 map-to-spec is

H1104 layout-spec is

H1105 pass-by-spec is

goo0:

oo0:

oo0:

00 attr-spec-extended J OO OO type-declaration-stmi 00 20000000000

gdgd

gboobobooobooooobbooboobobboboob 2000000000000

goooo

MAPTOO DO DOLAYOUTO D OODO PASSBYD OO DOOOOODOOODOOOODOO

type-spec [| , attr-spec-extended | ...

entity-decl-list

PARAMETER

access-spec

ALLOCATABLE

DIMENSION (array-spec)
EXTERNAL

INTENT (intent-spec)
INTRINSIC

OPTIONAL

POINTER

SAVE

TARGET

MAP_TO (map-to-spec)
LAYOUT (layout-spec)
PASS_BY (pass-by-spec)

scalar-char-initialization-expr
scalar-char-initialization-expr

scalar-char-initialization-expr

gobobooboobobobooobooooobobooooboon

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

o B

ooobobooboooooobbobooobbobobooboDEOO0DbO0O0DbDOD 00 High
Performance Fortran 0 0 00000000000 0C0CO0OODOOOOOO0 ACDOOOO
O00ORODUDUOOOOOOOOFortran0000 (“Fortran 95”) 000000000

Juogood

B.1 0OO00O0OO0OOOOOOOODOOOO

oo

action-stmt

add-op

add-operand
align-add-operand
align-attribute-stuff
align-directive
align-directive-stuff
align-dummy
align-primary
align-source
align-spec
align-subscript
align-subscript-use
align-target
align-target-extended
align-with-clause
alignee
alignee-extended
alignee-or-distributee
allocate-object
allocate-stmit
and-op

and-operand
array-constructor
array-spec
assignment-stmt
association-name

attr-spec

oooo
R216
R710
R706
H324
H315
H313
H314
H318
H325
H317
H320
H322
H323
H321
H809
H319
H316
H808
H805
R625
R622
R720
R715
R432
R513
R735
H334
R503

285

gooog

H208
H323
H326
H323
H302
H204
H313
H317
H324
H314
H319
H320
H322
H320

H314
H313

H804

H505

H505

H1102

H333

H505
H505
H324
H801 H803
H206
H803
H325

H315

H323 H325

H315
H803 H805

attr-spec-extended

block

block-data-stmt
block-on-directive
block-resident-directive
block-task-region-directive
call-stmt

case-construct
combined-attribute
combined-attribute-extended
combined-decl
combined-directive
data-stmt
deallocate-stmt
directive-origin
dist-attribute-stuff
dist-directive-stuff
dist-format
dist-format-clause
dist-onto-clause
dist-target
distribute-directive
distributee
distributee-extended
do-construct

dummy-arg
dynamic-directive
end-function-stmt
end-on-directive
end-resident-directive
end-subroutine-stmt
end-task-region-directive
entity-decl

equiv-op

equiv-operand
executable-construct
executable-construct-extended
executable-directive
executable-directive-extended
execution-part
explicit-shape-spec

expr

H1102
R801
H607
H905
H914
H918
R1211
R808
H302
H801
H303
H301
R532
R631
H202
H307
H306
H310
H309
H311
H312
H305
H308
H807
R816
R1223
H804
R1220
H906
H915
R1224
H919
R504
R722
R717
R215
H208
H205
H207
R208
R514
R723

H1101
H904

H904
H913
HI17

H208
H301

H301
H204

H201
H302
H305
H309
H306
H306
H311
H204
H305

H208
H602
H206

H904
H913

HI17
H1101
H505
H505

H203

H302
H505

H913 HI17

H206

H904 H913 HI17

H801 H802

H307 H802

H307

H206
H802 H805

H303 H330 H332

'S

©o o -~ =] ot

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

extended-dist-format
extended-dist-target
external-name
extrinsic-kind-keyword
extrinsic-prefic
extrinsic-spec
extrinsic-spec-arg
function-reference
function-stmt
function-subprogram
high-width

home

hpf-directive
hpf-directive-line
hpf-entity
if-construct
independent-directive
inherit-directive
inheritee

input-item
int-add-operand
int-expr
int-level-two-expr
int-mult-operand
int-variable
interface-body
internal-subprogram-part
10-unit

kind-selector

label

language

layout-spec
level-2-expr
low-width
map-to-spec
mask-expr

model

module-stmt

mult-op
mult-operand
namelist-stmi

new-clause

H810
H806
H613
H614
H608
H609
H610
R1210
H601
R1216
H823
H907
H203
H201
H304
R802
H501
H401
H402
R914
H326
R728
H328
H327
R607
R1205
R210
R901
R506
R313
H611
H1104
R707
H822
H1103
R743
H612
H606
R709
R705
Rb544
H502

H610
H609
H604 H605 H606 H607
H608
H609

H820
H903
H201

H303
H208
H205 H207
H204 H206
H401

H323 H324

H310 H322 H810 H821 H822 HS823
H323

H324

H318

H1002

H1002

H610
H1102
H328 H505
H820

H1102

H610

H505
H327 H505

H501 H903

nullify-stmt
on-construct
on-directive
on-stuff

or-op

or-operand
output-item
pass-by-spec
pointer-assignment-stmt
pointer-object
prefix

prefiz-spec
processors-decl
processors-directive
processors-elmt
program-stmt
range-attr
range-attr-stuff
range-directive
range-dist-format
range-distribution
ranger

read-stmt
realign-directive
redistribute-directive
reduction-clause
reduction-function
reduction-stmt
reduction-variable
res-object
resident-clause
resident-construct
resident-directive
resident-stuff
section-subscript
sequence-directive
shadow-attr-stuff
shadow-directive
shadow-spec
shadow-target

specification-directive

specification-directive-extended

R629
H904
H902
H903
R721
R716
R915
H1105
R736
R630
H603
H604
H330
H329
H909
H605
H815
H813
H811
H816
H814
H812
R909
H803
H802
H503
H506
H505
H504
H916
H910
H913
H912
HI911
R618
H333
H819
H817
H820
H818
H204
H206

H208
H207
H902 H905
H505
H505

H1102

H601 H602
H603
H329
H204 H206
H907

H814
H801 HS811
H206
H815
H813
H811

H207
H207
H501
H505

H503

HI911

H903

H208

H207

H910 H912 H914
H806 H908 H909
H204 H206

H801 HS817
H206

H819

H817

H203

'S

©o o -~ =] ot

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

specification-expr
specification-part
stat-variable
stop-stmt

stride
structure-component
subroutine-stmt
subscript
subscript-triplet
subset-directive
target
task-region-construct
template-decl
template-directive
template-elmt

type-declaration-stmi

type-declaration-stmi-extended

type-spec
variable
wait-spec
wait-stmt
where-construct
where-stmt
width
write-stmt

B.2 0O00O0OO0OOOOOOOOOOOOO

00
access-spec
array-variable-name

block-data-name

char-initialization-expr

common-block-name
component-name
default-int-expr
dummy-arg-name
function-name
int-array

intent-spec

module-name

R734
R204
R623
R840
R620
R614
H602
R617
R619
H901
R737
HI17
H332
H331
H908
R501
H1101
R502
R601
H1002
H1001
R739
R738
H821
R910

H504 H807 H808 H809

H322
H206

H208
H331
H204 H206
H907

H604 H1101
H505 H907
H1001

H208

H820

googo

H1102

H504

H607

H611 H612 H613 H1103 H1104 H1105
H334

H807 H808 H809 HS818
H1002

H601

H601

H810

H1102

H606

object
object-name

processors-naime

program-name

result-name

subroutine-name

template-name

variable-name

B.3 0O0O0OO

ud
IHPF$

ALIGN

ALL
ALLOCATABLE
BEGIN

BLOCK

CHPF$
CYCLIC

H916
H303
H807
H304
H605
H601
H602
H304
H812
H502

H308
H808
H312

H308
H908
H504

good

H202
H302
H320
H505
H810
H909
H302
H320
H505
H810
H909
H309
H324
H202
H505
H501
H334
H317
H301
H505
H302
H815

H1102

H905
H310
H202
H310

H303
H325
H601
H814
HI911
H303
H325
H601
H814
HI911
H310
H505

H505

H820

H333

H611
H313

H914
H607

H810

H316 H321 H334
H809 HS812 H818
H330 H806 H901

H321 H332 HS807

H309 H310 H314
H330 H332 H502
H602 H608 H801
H816 H819 HI07
H1001 H1102

H309 H310 H314
H330 H332 H502
H602 H608 H801
H816 H819 HI07
H1001 H1102

H312 H317 H320
H806 HS810 H816

H903 H1101

H802 H803 H1101
H612 H613 H1002
H801

H810 HS816

H816

H402

H909

H809

H315
H503
H806
H908

H315
H503
H806
H908

H322

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DATA
DIMENSION
DISTRIBUTE
DYNAMIC
ELEMENTAL
END

ERR
EXTERNAL

EXTERNAL _NAME

EXTRINSIC
FUNCTION
GEN_BLOCK
HOME

HPF
HPF_LOCAL
HPF_SERTAL
TAND

ID

IEOR

INDEPENDENT

INDIRECT
INHERIT
INTENT
INTRINSIC
IOR
TIOSTAT
LANGUAGE
LAYOUT
MAP_TO
MAX

MIN

MODEL
MODULE
NEW

NO

ON

ONTO
OPTIONAL
PARAMETER
PASS_BY
POINTER
PROCESSORS

H607
H302
H302
H801
H604
H906
H1002
H1102
H613
H608
H601
H810
H907
H614
H614
H614
H506
H1002
H506
H501
H810
H302
H1102
H1102
H506
H1002
H611
H1102
H1102
H506
H506
H612
H606
H502
H333
H902
H311
H1102
H1102
H1102
H1102
H302

H801 H1102
H305 H801
H804

H915 HI19

H816

H816
H401 HS801

H905 H906

H329 H801

PROGRAM
PURE
RANGE
REALIGN
RECURSIVE

REDISTRIBUTE

REDUCTION
RESIDENT
RESULT
SAVE
SEQUENCE
SHADOW
SUBROUTINE
SUBSET
TARGET
TASK_REGION
TEMPLATE
UNIT

WAIT

WITH

H605
H604
H801 HS811
H803
H604
H802
H503

H910 H912 H914 HI15

H601
H1102
H333
H801 HS817
H602
H801 H901
H1102
H918 HI19

H302 H331 HS801

H1002
H1001
H319

'S

©o o -~ =] ot

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

000 C HPF 1.1 Subset

As part of the definition of the previous version of the High Performance Fortran language,
HPF 1.1, a subset language was formally defined, based on the Fortran 77 language. The
goal was to permit more rapid implementations of a useful subset of HPF that did not
require full implementation of the new ANSI/ISO standard Fortran (“Fortran 90”).

No subset language is defined as part of the current version, HPF 2.0. This Annex
is included in the HPF 2.0 language document as a convenient summary of the HPF 1.1
Subset, which has served as a minimum requirement for HPF implementations.

C.1 Fortran 90 Features in the HPF 1.1 Subset

The features of the HPF 1.1 subset languages are listed below. For reference, the section
numbers from the Fortran 90 standard are given along with the related syntax rule numbers:

e All FORTRAN 77 standard conforming features, except for storage and sequence

association.

e The Fortran 90 definitions of MIL-STD-1753 features:

— DO WHILE statement (8.1.4.1.1 / R821)
— END DO statement (8.1.4.1.1 / R825)

— IMPLICIT NONE statement (5.3 / R540)
— INCLUDE line (3.4)

— scalar bit manipulation intrinsic procedures: IOR, IAND, NOT, IEOR, ISHFT,
ISHFTC, BTEST, IBSET, IBCLR, IBITS, MVBITS (13.13)

— binary, octal and hexadecimal constants for use in DATA statements (4.3.1.1 /
R407 and 5.2.9 / R533)

e Arithmetic and logical array features:

— array sections (6.2.2.3 / R618-621)

* subscript triplet notation (6.2.2.3.1)
% vector-valued subscripts (6.2.2.3.2)

— array constructors limited to one level of implied DO (4.5 / R431)

— arithmetic and logical operations on whole arrays and array sections (2.4.3, 2.4.5,
and 7.1)

293

— array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5)
— masked array assignment (7.5.3)
« WHERE statement (7.5.3 / R738)
* block WHERE . . . ELSEWHERE construct (7.5.3 / R739)
— array-valued external functions (12.5.2.2)
— automatic arrays (5.1.2.4.1)

— ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements (5.1.2.4.3,
6.3.1 / R622, and 6.3.3 / R631)

— assumed-shape arrays (5.1.2.4.2 / R516)

e Intrinsic procedures:

The list of intrinsic functions and subroutines below is a combination of (a) routines
which are entirely new to Fortran and (b) routines that have always been part of
Fortran, but have been extended here to new argument and result types. The new
or extended definitions of these routines are part of the subset. If a FORTRAN 77
routine is not included in this list, then only the original FORTRAN 77 definition is
part of the subset.

For all of the intrinsics that have an optional argument DIM, only actual argument
expressions for DIM that are initialization expressions are part of the subset. The
intrinsics with this constraint are marked with fin the list below.

— the argument presence inquiry function: PRESENT (13.10.1)

— all the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING, CMPLX,
CONJG, DBLE, DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT, REAL, SIGN
(13.10.2)

— all mathematical elemental functions: ACOS, ASIN, ATAN, ATAN2, COS, COSH, EXP,
LOG, LOG10, SIN, SINH, SQRT, TAN, TANH (13.10.3)

— all the bit manipulation elemental functions : BTEST, IAND, IBCLR, IBITS, IBSET,
IEOR, IOR, ISHFT, ISHFTC, NOT (13.10.10)

— all the vector and matrix multiply functions: DOT_PRODUCT, MATMUL (13.10.13)

— all the array reduction functions: ALL{, ANY{, COUNT{, MAXVAL{, MINVALT,
PRODUCTY, SUM{(13.10.14)

— all the array inquiry functions: ALLOCATED, LBOUND{, SHAPE, SIZEf,
UBOUNDY(13.10.15)

— all the array construction functions: MERGE, PACK, SPREAD}, UNPACK (13.10.16)
— the array reshape function: RESHAPE (13.10.17)

— all the array manipulation functions: CSHIFT{, EOSHIFT{, TRANSPOSE (13.10.18)
— all array location functions: MAXLOC}, MINLOCt(13.10.19)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

— all intrinsic subroutines: DATE_AND_TIME, MVBITS, RANDOM_NUMBER, RANDOM_SEED,
SYSTEM_CLOCK (3.11)

e Declarations:

— Type declaration statements, with all forms of type-spec except kind-selector
and TYPE(type-name), and all forms of attr-spec except access-spec, TARGET, and
POINTER. (5.1 / R501-503, R510)

— attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL, PARAMETER,
SAVE (5.2)

e Procedure features:

— INTERFACE blocks with no generic-spec or module-procedure-stmt (12.3.2.1)
— optional arguments (5.2.2)

— keyword argument passing (12.4.1 /R1212)

e Syntax improvements:

C.2

The

— long (31 character) names (3.2.2)
— lower case letters (3.1.7)
— use of “.” in names (3.1.3)

[ki

initiated comments, both full line and trailing (3.3.2.1)

HPF 1.1 Directives and Language Extensions in the HPF 1.1 Subset

following HPF 1.1 directives and language extensions to Fortran 90 were included in

the HPF 1.1 Subset:

The basic data distribution and alignment directives: ALIGN, DISTRIBUTE,
PROCESSORS. and TEMPLATE.

The forall-statement (but not the forall-construct).
The INDEPENDENT directive.
The SEQUENCE and NO SEQUENCE directives.

The system inquiry intrinsic functions =~ NUMBER_OF_PROCESSORS and
PROCESSORS_SHAPE.

The computational intrinsic functions ILEN, and the HPF extended Fortran intrin-
sics MAXLOC and MINLOC, with the restriction that any actual argument expression

corresponding to an optional DIM argument must be an initialization expression.

For a discussion of the rationale by which features were chosen for the HPF 1.1 Subset,

please consult HPF Language Specification Version 1.1.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

000D Previous HPFF
Acknowledgments

The current HPF 2.0 document would not have been possible without the contributions of
the previous series of HPFF meetings. Following are the acknowlegements for those efforts.

D.1 HPFF Acknowledgments

Technical development for HPF 1.0 was carried out by subgroups, and was reviewed by the
full committee. Many people served in positions of responsibility:

e Ken Kennedy, Convener and Meeting Chair;

e Charles Koelbel, Executive Director and Head of the FORALL Subgroup;

e Mary Zosel, Head of the Fortran 90 and Storage Association Subgroup;

e Guy Steele, Head of the Data Distribution Subgroup;

e Rob Schreiber, Head of the Intrinsics Subgroup;

e Bob Knighten, Head of the Parallel I/O Subgroup;

e Marc Snir, Head of the Extrinsics Subgroup;

e Joel Williamson and Marina Chen, Heads of the Subroutine Interface Subgroup; and

e David Loveman, Editor.

Geoffrey Fox convened the first HPFF meeting with Ken Kennedy and later led a group
to develop benchmarks for HPF. Clemens-August Thole organized a group in Europe and
was instrumental in making this an international effort. Charles Koelbel produced detailed
meeting minutes that were invaluable to subgroup heads in preparing successive revisions
to the draft proposal. Guy Steele developed IATEX macros for a variety of tasks, including
formatting BNF grammar, Fortran code and pseudocode, and commentary material; the
document would have been much less aesthetically pleasing without his efforts.

Many companies, universities, and other entities supported their employees’ attendance
at the HPFF meetings, both directly and indirectly. The following organizations were
represented at two or more meetings by the following individuals (not including those present
at the first HPFF meeting in January of 1992, for which there is no accurate attendee list):
Alliant Computer Systems Corporationcoviiiiiiienne... David Reese

Amoco Production Company Jerrold Wagener, Rex Page

Applied Parallel Research John Levesque, Rony Sawdayi, Gene Wagenbreth
Archipel ... Jean-Laurent Philippe
CONVEX Computer Corporationccoiiiiiiiieinnn... Joel Williamson
Cornell Theory Centercviuiiiiiiiiiiiiiiiiniieenn.. David Presberg
Cray Research, Inc. ool Tom MacDonald, Andy Meltzer
Digital Equipment Corporationcciiiiiiii i . David Loveman
Fujitsu Americao i Siamak Hassanzadeh, Ken Muira
Fujitsu Laboratoriesc.ooiiiiiiriiiiii .., Hidetoshi Iwashita
GMD-I1.T, Sankt Augustincc .. Clemens-August Thole
Hewlett Packard Maureen Hoffert, Tin-Fook Ngai, Richard Schooler
IBM ...l Alan Adamson, Randy Scarborough, Marc Snir, Kate Stewart
Institute for Computer Applications in Science & Engineering ... Piyush Mehrotra
Intel Supercomputer Systems Divisionooia.L. Bob Knighten
Lahey Computer Lev Dyadkin, Richard Fuhler, Thomas Lahey, Matt Snyder
Lawrence Livermore National Laboratory Mary Zosel
Los Alamos National Laboratory Ralph Brickner, Margaret Simmons
Louisiana State Universityc.ciiiiiiiiiiiiiiiiiiinn.. J. Ramanujam
MasPar Computer Corporationc..oeiiiiiiiiiieaniea.n. Richard Swift
Meiko, Inc. ... e James Cownie
NnCUBE, Inc. ... Barry Keane, Venkata Konda
Ohio State Universityoovieiiiiiiiiiiiiiiniiniann., P. Sadayappan
Oregon Graduate Institute of Science and Technology Robert Babb II
The Portland Group, Inc.o Vince Schuster
Research Institute for Advanced Computer Science Robert Schreiber
Rice Universityccooviiiiiii e, Ken Kennedy, Charles Koelbel
Schlumbergero i e Peter Highnam
Shell Lo e Don Heller
State University of New York at Buffalo Min-You Wu
SunPro and Sun Microsystems Prakash Narayan, Douglas Walls
Syracuse Universitycocoviiiiiiiiiinn.. Alok Choudhary, Tom Haupt
TNO-TU Delft ..o Edwin Paalvast, Henk Sips
Thinking Machines Corporation Jim Bailey, Richard Shapiro, Guy Steele
United Technologies Corporationocoiiiiiiiiaann... Richard Shapiro
University of Stuttgart Uwe Geuder, Bernhard Woerner, Roland Zink
University of Southampton i John Merlin
University of Viennao .. Barbara Chapman, Hans Zima
Yale Universityooooiiiiiiiiiiiiina... Marina Chen, Aloke Majumdar

Many people contributed sections to the final language specification and HPF Journal
of Development, including Alok Choudhary, Geoffrey Fox, Tom Haupt, Maureen Hoffert,
Ken Kennedy, Robert Knighten, Charles Koelbel, David Loveman, Piyush Mehrotra, John

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Merlin, Tin-Fook Ngai, Rex Page, Sanjay Ranka, Robert Schreiber, Richard Shapiro, Marc
Snir, Matt Snyder, Guy Steele, Richard Swift, Min-You Wu, and Mary Zosel. Many others
contributed shorter passages and examples and corrected errors.

Because public input was encouraged on electronic mailing lists, it is impossible to

identify all who contributed to discussions; the entire mailing list was over 500 names long.

Following are some of the active participants in the HPFF process not mentioned above:

N. Arunasalam
Babak Bagheri
Peter Belmont
Christian Bishof
Duane Carbon
Doreen Cheng
Robert Corbett
James Demmel
Pablo Elustondo
Hans-Hermann Frese
Rick Gorton
Hiroki Honda
Ken Jacobsen
Alan Karp

Ross Knippe

Ed Krall

Bryan Lawver
David Levine
Ruth Lovely
Stephen Mark
Oliver McBryan
Charles Mosher
Yoichi Muraoka
Dale Nielsen
Jeff Painter

Bob Riley

J.L. Schonfelder
G.M. Sigut

Paul St.Pierre
Jaspal Subhlok
Bernard Tourancheau
Stephen Vavasis
Ji Wang
Matthijs van Waveren
Stephen Whitley
Marco Zagha

Werner Assmann
Vasanth Bala
Mike Bernhardt
John Bolstad
Richard Carpenter
Mark Christon
Bill Crutchfield
Alan Egolf
Robert Ferrell
Steve Goldhaber
Robert Halstead
Carol Hoover
Elaine Jacobson
Ronan Keryell
Bruce Knobe
Tom Lake

Bruce Leasure
Theodore Lewis
Doug MacDonald
Philippe Marquet
Charlie McDowell
Len Moss

Bernie Murray
Kayutov Nikolay
Cherri Pancake
Kevin Robert
Doug Scofield
Anthony Skjellum
Nick Stanford
Xiaobai Sun
Anna Tsao
Arthur Veen
Karen Warren
Robert Weaver
Michael Wolfe

Marc Baber

Jason Behm

Keith Bierman
William Camp
Brice Cassenti
Fabien Coelho

J. C. Diaz

Bo Einarsson

Rhys Francis
Brent Gorda
Reinhard von Hanxleden
Steven Huss-Lederman
Behm Jason
Anthony Kimball
David Kotz

Peter Lawrence
Stewart Levin
Woody Lichtenstein
Raymond Man
Jeanne Martin
Michael Metcalf
Lenore Mullin
Vicki Newton
Steve O’Neale
Harvey Richardson
Ron Schmucker
David Serafini
Niraj Srivastava
Mia Stephens
Hanna Szoke

Alex Vasilevsky
Brian Wake
D.C.B. Watson
Fred Webb

Fujio Yamamoto

The following organizations made the language draft available by anonymous FTP
access and/or mail servers: AT&T Bell Laboratories, Cornell Theory Center, GMD-I1.T
(Sankt Augustin), Oak Ridge National Laboratory, Rice University, Syracuse University,
and Thinking Machines Corporation. These outlets were instrumental in distributing the
document.

The High Performance Fortran Forum also received a great deal of volunteer effort in
nontechnical areas. Theresa Chatman and Ann Redelfs were responsible for most of the
meeting planning and organization, including the first HPFF meeting, which drew over 125
people. Shaun Bonton, Rachele Harless, Rhonda Perales, Seryu Patel, and Daniel Swint
helped with many logistical details. Danny Powell spent a great deal of time handling the
financial details of the project. Without these people, it is unlikely that HPF would have
been completed.

HPFF operated on a very tight budget (in reality, it had no budget when the first
meeting was announced). The first meeting in Houston was entirely financed from the
conferences budget of the Center for Research on Parallel Computation, an NSF Science
and Technology Center. DARPA and NSF have supported research at various institutions
that have made a significant contribution towards the development of High Performance
Fortran. Their sponsored projects at Rice, Syracuse, and Yale Universities were particularly
influential in the HPFF process. Support for several European participants was provided
by ESPRIT through projects P6643 (PPPE) and P6516 (PREPARE).

D.2 HPFF94 Acknowledgments

The HPF 1.1 version of the document was prepared during the HPFF94 series of meetings. A
number of people shared technical responsibilities for the activities of the HPFF94 meetings:

e Ken Kennedy, Convener and Meeting Chair;

e Mary Zosel, Executive Director and head of CCI Group 2;
e Richard Shapiro, Head of CCI Group 1;

e lan Foster, Head of Tasking Subgroup;

e Alok Choudhary, Head of Parallel I/O Subgroup;

e Chuck Koelbel, Head of Irregular Distributions Subgroup;
e Rob Schreiber, Head of Implementation Subgroup;

e Joel Saltz, Head of Benchmarks Subgroup;

e David Loveman, Editor, assisted by Chuck Koelbel, Rob Schreiber, Guy Steele, and
Mary Zosel, section editors.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Attendence at the HPFF94 meetings included the following people from organizations

that were represented two or more times.

Don Heller ... e Ames Laboratory
Jerrold Wagener il Amoco Production Company
John Levesqueo Applied Parallel Research
Tan Foster ... Argonne National Laboratory
Terry Pratt ... CESDIS/NASA Goddard
JIm Cowie ..o Cooperating Systems
Andy Meltzer, Jon Steidel i Cray Research, Inc.
David Lovemancciiiiiiiiiiiiinn... Digital Equipment Corporation
Bruce Olsencooiii i e Hewlett Packard
E. Nunohiro, Satoshi Ttoh Hitachi
Henry Zongaroooonuuii e IBM
Piyush Mehrotra ... Institute for Computer Applications in Science & Engineering
Bob Knighten, Roy Touzeaucciiiiiiiiiiiii .. Intel SSD
Mary Zosel, Bor Chan, Karen Warren ...Lawrence Livermore National Laboratory
Ralph Brickner oo oot Los Alamos National Laboratory
J.Ramanujam ... Louisiana State University
Paula Vaughan, Donna Reese Mississippi State University and NSF ERC
Shoichi Sakon, Yoshiki Seo........ ..o NEC
P. Sadayappan, Chua-Huang Huang Ohio State University
Andrew Johnsono i OSF Research Institute
Chip Rodden, Jeff Vanderlipoo.L. Pacific Sierra Research
Larry Meadows, Doug Milesoooo... The Portland Group, Inc.
Robert Schreiber Research Institute for Advanced Computer Science
Ken Kennedy, Charles Koelbelot Rice University
Tra Baxter ... Schlumberger
Alok Choudhary Syracuse University
Guy Steele Thinking Machines Corporation, Sun Microsystems
Richard Shapiro Thinking Machines Corp., Silicon Graphics Inc.
Scott Baden, Val Donaldson University of California, San Diego
Robert Babb ... University of Denver
Joel Saltz, Paul Havlakot University of Maryland
Nicole Nemer-Preeceooiiiiiiiii.n. University of Missouri-Rolla
Hans Zima, Siegfried Benkner, Thomas Fahringer University of Vienna

An important activity of HPFF94 was the processing of the many items submitted for
comment and interpretation which led to the HPF 1.1 update of the language document.
A special acknowlegement goes to Henry Zongaro, IBM, for many thoughtful questions
exposing dark corners of language design that were previously overlooked, and to Guy
Steele, Thinking Machines/Sun Microsystems for his analysis of, and solutions for some of
the thornier issues discussed. And general thanks to the people who submitted comments
and interpretation requests, including:

David Loveman, Michael Hennecke, James Cownie, Adam Marshall, Stephen Ehrlich,
Mary Zosel, Matt Snyder, Larry Meadows, Dick Hendrickson, Dave Watson, John Merlin,
Vasanth Bala, Paul.Wesson, Denis.Hugli, Stanly Steinberg, Henk Sips, Henry Zongaro,
Eiji_Nunohiro, Jens Bloch Helmers, Rob Schreiber, David B. Serafini, and Allan Knies.

Other special mention goes to Chuck Koelbel at Rice University for continued mainte-
nance of the HPFF mailing lists, to Donna Reese and staff at Mississippi State University
for establishing and maintaining a WWW home-page for HPFF, and to the University of
Maryland for establishing a benchmark FTP site.

Theresa Chatman and staff at Rice University were responsible for meeting planning
and organization and Danny Powell continued to handle financial details of the project.

HPFF94 received direct support for research and administrative activities from grants
from ARPA, DOE, and NSF.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

©o o -~ =] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

oo

1]

[5]

American National Standards Institute, Inc., 1430 Broadway, New York, NY. American
National Standard Programming Language FORTRAN, ANSI X3.9-1978, approved April
3, 1978.

American National Standards Institute, Inc., 1430 Broadway, New York, NY. Ameri-
can National Standard for Information Systems Programming Language FORTRAN, S8
(X3.9-198x) Revision of X3.9-1978, Draft S8, Version 104, April 1987.

High Performance Fortran Forum. High Performance Fortran Language Specification
Scientific Programming, 2,1, 1993. Also published as: CRPC-TR92225, Center for Re-
search on Parallel Computation, Rice University, Houston, TX, 1992 (revised May.
1993). Also published as: Fortran Forum, 12,4, Dec. 1993 and 13,2, June 1994.

High Performance Fortran Forum. High Performance Fortran Language Specification,
version 1.0 CRPC-TR92225, Center for Research on Parallel Computation, Rice Uni-
versity, Houston, TX, 1992 (revised May. 1993).

US Department of Defense. Military Standard, MIL-STD-1753: FORTRAN, DoD Sup-
plement to American National Standard X3.9-1978, November 9, 1978.

303

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

000 E Policy and Mechanism for
Recognized Extrinsic Interfaces

HPF defines certain extrinsics such as HPF_LOCAL, and HPF_SERIAL as interfaces that HPFF
believes are useful to the HPF community. But there are many more such extrinsic interfaces
beyond those maintained by HPFF. HPFF has a adopted a policy of formally recognizing
certain extrinsic interface definitions, where the interface, and its addition to the HPF
document is considered to be a service to the HPF community. Examples are language
bindings to HPF or library packages.

E.1 Extrinsic Policy

To be considered for HPFF recognition, a proposed extrinsic must demonstrate the follow-
ing things. It should be noted, however, that meeting these criteria does not guarentee
acceptance of a proposed interface by HPFF.

e conformance to HPF rules for calling extrinsics,

e significant new functionality,

e existing practice such as users, implementations, etc.,
e institutional backing with evidence of ongoing support,
e coherent documentation,

e non-proprietary interface definition, and

e copyright goes to HPFF for interface, with permission to use (royalty free).

If a proposed extrinsic is accepted by HPFF, then:

e HPFF will recogize the interface and reference it in documentation, but HPFF does

not assume responsibility for the extrinsic or its interface.

e The sponsor of the extrinsic must continue to conform to the HPF interface rules for
extrinsics. The interface HPFF approves must not change without HPFF approval.

e The sponsor must assume responsibility for any CCI requests concernting the extrinsic.

A list of recognized extrinsic interfaces will be included in HPF documentation, with
the following guidelines:

305

e There should be a single page introduction to the extrinsic which contains:

— the name of the extrinsic,

— a brief abstract of functionality,

— a brief and informal description of the interface,

— information about platform and system availability, and

— reference and contacts for formal documentation, continued responsibility, and
additional information (e.g. compiler availability).

e There should be about two pages with short examples of usage.

e A short paper with the formal definition of the interface and an informal description
of the functionality of the extrinsic.

E.2 Extrinsic Interface Mechanism

The HPF www-home page will have instructions for submission of an extrinsic interface.
For HPFF consideration, the sponsor prepares a proposal that includes:

e a statement of what significant new functionality is provided,

e a description of existing practice,

a statement of institutional backing with evidence of ongoing support,

a copy of the complete documentation or a reference to an online version of the

documentation,

a draft of the text (described above) that would be included in the HPFF documen-
tation, and

e a statement justifying the claim that the interface follows HPF conventions for calling

extrinsics.
If the proposed extrinsic interface is approved by HPFF, the sponsor then submits:

e a formal statement for HPFF records that the interface definition is non-proprietary
and that the copyright of the interface belongs HPFF,

e the formal contact for CCI and continued maintenance of the interface, and

e a copy of the interface documentation formatted for HPFF use, including a copy in
the current document and web mark-up languages.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

000 F HPF CRAFT

HPF_CRAFT is a hybrid language, combining an SPMD execution model with high per-
forming HPF features. The model combines the multi-threaded execution of HPF_LOCAL
and the HPF syntax. The goal of HPF_CRAFT is to attain the potential performance of
an SPMD programming model with access to HPF features and a well-defined extrinsic
interface to HPF.

F.1 Introduction

HPF_CRAFT is a hybrid language, combining an SPMD execution model with high per-
forming and portable HPF features. The model combines the multi-threaded execution of
HPF_LOCAL and the HPF syntax and features. The goal of HPF_CRAFT is to attain the
potential performance of an SPMD programming model with access to HPF features and
a well-defined extrinsic interface to HPF. It is built on top of the HPF_LOCAL extrinsic
environment.

SPMD features and a multi-threaded model allow the user to take advantage of the
performance and opportunity for low level access of a more general purpose programming
model. Including HPF data distribution features gives the programmer access to high
performing aspects of both models, but with the added responsibility of working with a
more low-level execution model. HPF_CRAFT is best suited for platforms that support one
way communication features, but is consistent with HPF and easily targeted for platforms
that have HPF and can support SPMD programming styles.

The HPF features included in HPF_CRAFT are a subset of the full HPF language
chosen for their performance and their broad portability and ease of use. HPF_CRAFT
contains additional features to support SPMD programming styles. There are some differ-
ences from HPF, however. For example, I/O causes differences; in HPF_CRAFT different
processors are allowed to read from different files at the same time, in HPF the processors
must all read from the same file. The differences in the models are principally caused by
the multi-threaded execution model and the introduction of HPF_LOCAL data rules.

HPF_CRAFT allows for the notion of private data. Data defaults to a mapping in
which data items are allocated so that each processor has a unique copy. The values of
the individual data items and the flow of control may vary from processor to processor
within HPF_CRAFT. This behavior is consistent with the behavior of HPF_LOCAL. In
HPF_CRAFT a processor may be individually named and code executed based upon which
processor it is executing on. HPF_CRAFT also allows for the notion of private loops. A
private loop is executed in entirety by each processor.

307

The rules governing the interface to HPF_CRAFT subprograms are similar to those for
the HPF_LOCAL interface. Dummy arguments use a hybrid of the interfaces between HPF
and itself and that of HPF and HPF_LOCAL. Explicitly mapped dummy arguments behave
just as they do in HPF, while default (private) dummy arguments use the HPF_LOCAL
calling convention.

HPF_CRAFT will be initially made available on Cray MPP systems and may also be
available on Cray vector architectures. Future versions of HPF_CRAFT are possible on
other vendor’s architectures as well.

HPF_CRAFT is being implemented for Cray Research by The Portland Group, Inc. For
Cray systems, HPF_CRAFT may be obtained through the Cray Research Inc. Orderdesk,

Cray Research Inc.
orderdsk@cray.com
(612) 683-5907

Additional formal documentation, requests, and suggestions can be made to

The Portland Group

9150 SW Pioneer Ct., Suite H
Wilsonville, OR 97070

(503) 682-2806
trs@pgroup.com

F.2 Examples of Use

HPF_CRAFT is intended for use in circumstances where greater control and performance
are desired for MIMD style architectures. Since data may be declared to be private, local
control is made more available and since processor information is available message passing
and direct memory access programming styles can be seamlessly integrated with explicitly
mapped data.

The following examples show some of the capabilities of HPF_CRAFT that are dif-
ferent from those of HPF. Others, such as integrated message passing and synchronization
primitives are not shown. Much of HPF can also be used within HPF_CRAFT.

Example 1 illustrates the difference between the default distribution for data and the
distribution of mapped data.

! Example 1

INTEGER PRIVATE_A(100, 20), PRIVATE B(12, 256), PRIVATE C
INTEGER MAPPED A(100, 20), MAPPED B(12, 256), MAPPED C
'HPF$ DISTRIBUTE MAPPED_A(BLOCK, BLOCK), MAPPED B(BLOCK, *), MAPPED C

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

In the above example, given 8 processors, there would be 8 * 100 * 20 (or 16,000) elements
in the array PRIVATE_A. Each processor contains an entire array named PRIVATE_A. The
elements of PRIVATE_A on processor 1 cannot be referenced using implicit syntax by any
other processor. There are only 100 * 20 (or 2000) elements of array MAPPED_A, however,
and these elements are distributed about the machine in a (BLOCK, BLOCK) fashion.

The difference between the PRIVATE A declaration in HPF_CRAFT and that in HPF
is the most instructive. In HPF_CRAFT each processor contains one copy of the array,
and the values of the elements of the array may vary from processor to processor. HPF
implementations are permitted to make one copy of the array per processor the default, but
the values of these copies must remain coherent across all processors. In HPF there is no
way to write a conforming program in which different processors have different values for
the same array.

Example 2 shows the usefulness of the ON clause for the INDEPENDENT loop as well as
giving an example of how private data may be used.

! Example 2

PRIVATEC = 0
|HPF$ INDEPENDENT (I, J) ON MAPPED B(I, J)
DO J=1,256
DO I=1,12
MAPPED_B(I, J) = MAPPED B(I, J) + 5
PRIVATE.C = PRIVATE.C + MAPPED B(I, J)
ENDDO
ENDDO

In this example, each iteration is executed on the processor containing the data that is
mapped to it. The user was allowed to specify this.

In addition, the private variable PRIVATE_C is used to compute a total for each processor.
At the end of execution of the loop, the values of PRIVATE_C may be different on each
processor depending upon the values in the elements of the array on each processor. This
data may be used as is, or it can be quickly summed using a barrier or an ATOMIC UPDATE.

Example 3 shows the final total value being combined into the variable MAPPED_C whose
value is available to all processors.

! Example 3

MAPPED C = 0
'HPF$ ATOMIC UPDATE
MAPPED_C = MAPPED_C + PRIVATE_C

Example 4 shows how the language allows private data to vary from processor to
processor.

! Example 4

IF (MY_PE() .EQ. 5) THEN
PRIVATE_C = some-big-expression
ENDIF

In this example, PRIVATE_C on processor 5 will have the result of some-big-ezpression. Each
processor can do distinctly different work and communicate through mapped data.

The code fragment in Example 5 is from an application and shows a few features of
the language.

! Example 5

IHPF$ GEOMETRY G(*, CYCLIC)
REAL FX(100,100), FY(100,100), FZ(100,100)
IHPF$ DISTRIBUTE (G) :: FX,FY,FZ
REAL FXP(100,16,100), FYP(100,16,100)
'HPF$ DISTRIBUTE FXP(x,*, BLOCK) FYP(*,*, BLOCK)
INTEGER CELL, ATOM, MAP(1000), NACELL(1000)

'HPF$ INDEPENDENT (CELL) ON FX(1,CELL)
DO CELL=1,100
JCELLO = 16 (CELL-1)
DO NABOR = 1, 13
JCELL = MAP(JCELLO+NABOR)
DO ATOM=1, NACELL(CELL)
FX(ATOM, CELL) = FX(ATOM, CELL) + FXP(ATOM, NABOR, JCELL)
FY(ATOM, CELL) = FY(ATOM, CELL) + FYP(ATOM, NABOR, JCELL)
ENDDO
ENDDO
ENDDO

The GEOMETRY directive allows the user to generically specify a mapping and use it to
apply to many arrays (they need not have the same extents.)

Example 5 has a single INDEPENDENT loop which is the outer loop. It executes 100
iterations total. Within this loop the private value of JCELLO is set for each processor
(ensuring that it is a local computation everywhere.) Nested inside the INDEPENDENT loop
is a private loop; this loop executes 13 times per processor. Inside this loop JCELL is

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

computed locally on each processor, minimizing unnecessary communication. Finally the

innermost loop is also private.

F.3 External Interface

This section describes the behavior when an HPF_CRAFT routine is called from HPF.

The calling convention and argument passing rules for HPF_CRAFT are a hybrid of
those for HPF calling HPF_LOCAL and HPF calling HPF. Explicit interfaces are required.
Where dummy arguments are private (default) storage, the HPF calling HPF_LOCAL con-
ventions are used. Where dummy arguments are explicitly mapped, the calling convention
matches HPF calling HPF.

There are a number of constraints on HPF_CRAFT routines that are called from HPF.
The following is a list of restrictions placed on HPF_CRAFT routines called from HPF:

o Recursive HPF_CRAFT routines cannot be called from HPF.

e HPF_CRAFT routines called from HPF may only enter the routine at a single place
(no alternate entries).

e An HPF_CRAFT supprogram may not be invoked directly or indirectly from within
the body of a FORALL construct or within the body of an INDEPENDENT DO loop that
is inside an HPF program.

e The attributes (type, kind, rank, optional, intent) of the dummy arguments in a
supprogram called by HPF must match the attributes of the corresponding dummy

arguments in the explicit interface.

A dummy argument of an HPF_CRAFT supprogram called by HPF

— must not be a procedure name.

— must not have the POINTER attribute.

— must not be sequential, unless it is also PE_PRIVATE.

— must have assumed shape even when it is explicit shape in the interface.

— if scalar, it must be mapped so that each processor has a copy of the argument.

e The default mapping of scalar dummy arguments and of scalar function results when
an HPF program calls an HPF_CRAFT routine is that it is replicated on each pro-

cessor.

If a dummy argument of an EXTRINSIC('HPF_CRAFT') routine interface block is an
array and the dummy argument of the HPF_CRAFT supprogram has the default private
mapping, then the corresponding dummy argument in the specification of the HPF_CRAFT
procedure must be an array of the same rank, type, and type parameters. When the extrinsic
procedure is invoked, the dummy argument is associated with the local array that consists
of the subgrid of the global array that is stored locally.

If the dummy argument of the HPF_CRAFT supprogram is explicitly mapped, it must
have the same mapping as the dummy argument of the EXTRINSIC('HPF_CRAFT') suppro-
gram. Note that this restriction does not require actual and dummy arguments to match
and is no more stringent than saying that mappings of dummy arguments in interface blocks
must match those in the actual routine.

F.4 Execution Model

HPF_CRAFT is built upon the fundamental execution model of HPF_LOCAL, augmented
with data mapping and work distribution features from HPF. It is also augmented with
explicit low-level control features, many taken from Cray Research’s CRAFT language.

In HPF_CRAFT there is a single task on each processor and all tasks begin executing in
parallel, with data defaulting to a private distribution, the same default distribution used in
HPF_LOCAL. Each processor gets a copy of the data storage unless specified otherwise by
the user. Consequently I/O works identically to I/O in HPF_LOCAL and message passing
libraries are easily integrated.

Simply stated, the execution model is that of HPF_LOCAL.

To provide correct behavior when explicitly mapped data is involved, this model defines
implicit barrier points at which the execution model requires that all processors must stop
and wait for the execution of all other processors before continuing. These barriers add
additional semantics to the HPF_LOCAL behavior. An implementation may remove any
of these barriers that are deemed unnecessary, but every processor must participate in the
barriers at each one of these points.

The points where there are implicit barriers are conceptually after those instances in
which the processors in the HPF_CRAFT program are executing cooperatively, as if in an
HPF program (e.g., after an INDEPENDENT loop). An HPF_CRAFT program treats oper-
ations on explicitly mapped objects as if they were operations in an HPF program and it
treates operations on private data as if they were executed within the HPF_LOCAL frame-
work. It is occasionally useful for an advanced programmer to indicate to the compilation
system where barriers are not needed; HPF_CRAFT has syntax to allow this capability.

F.5 HPF_CRAFT Functional Summary

HPF_CRAFT contains a number of features not available in HPF, and restricts the usage
of many of the features currently available. The following is a concise list of the differences.

e INDEPENDENT has been extended to better support an ON clause.

e There are new rules defining the interaction of explicitly mapped and private data.

Parallel inquiry intrinsics IN_PARALLEL () and IN_INDEPENDENT () have been added.

Serial regions (MASTER / END MASTER) have been added.

Explicit synchronization primitives are provided.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

e The ATOMIC UPDATE, SYMMETRIC, and GEOMETRY directives have been added.

e Many other compiler information directives have been added to assist the compiler in
producing good quality code.

F.5.1 Data Mapping Features

Data mapping features provided are those that have been found useful most often. When
data is explicitly mapped, only one copy of the data storage is created unless the explicit
mapping directs otherwise. The value of explicitly mapped replicated data items must be
consistent between processors as is the case in HPF. Storage and sequence association for
explicitly mapped arrays is not guaranteed in HPF_CRAFT. For private data, storage and
sequence association follows the Fortran 90 rules.

A new directive is included for completeness: PE_PRIVATE, which specifies that the
data should conform to the default behavior. The values of private varaibles may vary on
different processors.

F.5.2 Subprogram Interfaces

The behavior and requirements of an HPF_CRAFT program at subprogram interfaces may
be divided into three cases. Each case is also available using some combination of HPF and
HPF_LOCAL. For dummy arguments that are explicitly mapped, the behavior is identical
to that of HPF. All processors must cooperate in a subprogram invocation that remaps or
explicitly maps data. In other words, if an explicit interface is required (by the HPF rules)
or the subprogram declares explicitly mapped data, the subprogram must be called on all
processors. Processors need not cooperate if there are only reads to non-local data. The
INHERIT attribute may only be applied to explicitly mapped data.

Data that has the default private mapping (case two) the behavior of an HPF_CRAFT
subprogram at subprogram interfaces is identical to that of HPF_LOCAL. Data is passed
individually on every processor and the processors need not interact in any way.

When a subprogram is passed actual arguments that are a combination of both explic-
itly mapped data and private data, the explicitly mapped data follows the HPF rules and
the private data follows the HPF_LOCAL rules.

In case three, the user has the option of passing data with explicitly mapped actual
arguments to dummy arguments that are not explicitly mapped (i.e., private.) The mapping
rules for this data are identical to the mapping rules when HPF calls an HPF_LOCAL
subprogram. The data remains “in-place.” All HPF arrays are logically carved up into
pieces; the HPF_CRAFT procedure executing on a particular physical processor sees an
array containing just those elements of the global array that are mapped to that physical
processor. There is implicit barrier synchronization after an INDEPENDENT loop. Transfer
of control into or out of an INDEPENDENT loop is prohibited.

Finally, it is undefined behavior when an actual argument is private and the dummy
argument is explicitly mapped. A definition could be supplied for this interaction, but

it is the same solution that one might propose for a calling sequence when HPF_LOCAL
subprograms call HPF subprograms.

F.5.3 The INDEPENDENT Directive

The INDEPENDENT directive is part of HPF_CRAFT with the same semantics as in HPF.
However, within INDEPENDENT loops the values of private data may vary from processor to
processor. INDEPENDENT applied to FORALL has identical syntax and semantics as in HPF.

An HPF independent loop optionally may have a NEW clause. The NEW clause is not
required by HPF_CRAFT for default (not explicitly mapped) data. In HPF_CRAFT data
defaults to private so values may differ from processor to processor.

Private data has slightly different behavior than data specified in the NEW clause. The
value of a private datum on each processor can be used beyond a single iteration of the
loop. Private data may be used to compute local sums, for example. The values of data
items named in a NEW clause may not be used beyond a single iteration. The NEW clause
asserts that the INDEPENDENT directive would be valid if new objects were created for the
variables named in the clause for each iteration of the loop. The semantics of the NEW clause
are identical in HPF_CRAFT and HPF.

The semantics of an INDEPENDENT applied to loops containing private data references
changes with respect to the private data. The change can be summarized to say that instead
of indicating that iterations have no dependencies upon one-another, with respect to the
private data, iterations on different processors have no dependencies upon one-another.

F.5.4 The ON Clause

In addition to the version of INDEPENDENT available from HPF, a new version of INDEPENDENT
is included that incorporates the ON clause. There are a number of differences between the
versions of INDEPENDENT with and without the ON clause.

The new version of the INDEPENDENT directive may be applied to the first of a group of
tightly nested loops and may apply to more than one of them. This more easily facilitates
the use of the ON clause. The current INDEPENDENT directive applies only to a single loop
nest. The INDEPENDENT directive is extended so that multiple loop nests can be named.
The general syntax for these new independent loops is as follows:

'HPF$ INDEPENDENT (Iy,Is,...,I,) ON array-name(h;(I1),ha(I2),. .. h,(I,))
DOI; =Ly, Uy, Sy
DO IZ = L27 U27 SQ
DO I, = Ly, Up, Sy

END DO

END DO
END DO

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

The syntax and semantics of INDEPENDENT with the ON clause are different from its
syntax and semantics without the ON clause. With the ON clause the directive states that
there are no cross-processor dependencies, but there may be dependencies between iterations
on a processor. There is an implicit barrier synchronization after an INDEPENDENT loop.
Transfer of control into or out of an INDEPENDENT loop is prohibited.

The iteration space of an INDEPENDENT nest must be rectangular. That is, the lower
loop bound, the upper loop bound, and the step expression for each loop indicated by the
INDEPENDENT induction list must be invariant with regard to the INDEPENDENT nest. Each
index expression of array-name in the ON clause (the functions h; above,) must be one of
the following two forms:

a * loop_control_variable + b
p

a * loop_control_variable - b
p

where a and b must be integer values; they can be expressions, constants, or variables. The
values of ¢ and b must be invariant with regard to the INDEPENDENT loop nest. For example,
specifying A(I,J,K) is valid. Specifying A(3,I+J,K) is not valid. Specifying A(T,I,K) is
not valid because I appears twice. Division is prohibited in any index expression of the ON
clause.

F.5.5 Array Syntax

Array syntax is treated identically in HPF_CRAFT as in HPF for explicitly mapped objects.
For private objects the behavior is identical to that of HPF_LOCAL. When private objects
and explicitly mapped objects are combined the rules are as follows:

result = rhs; opy rhss ops ... opy, Ths,

o If result is explicitly mapped and all rhs arrays are explicitly mapped, the work is
distributed as in HPF.

e If result is private and all rhs arrays are private the computation is done on all pro-
cessors as an HPF_LOCAL program would do it.

e If result is private and all rhs arrays are explicitly mapped, the work is distributed as
in HPF and the values of the results are broadcast to the result on each processor.

o If result is explicitly mapped and not all rhs arrays are explicitly mapped, the results
of the operation are undefined, unless all corresponding elements of all private rhs
arrays have the same values.

e If result is private and some, but not all rhs arrays are explicitly mapped, the value
is computed on each processor and saved to the local result.

All processors must participate in any array syntax statement in which the value of an
explicitly mapped array is modified, and there is implicit barrier synchronization after the

statement executes.

F.5.6 Treatment of FORALL and WHERE Statements

The FORALL and WHERE statements are treated exactly as in HPF when data is explicitly
mapped. When private data is modified, the statement is executed separately on each pro-
cessor. Finally, when data in a FORALL or WHERE are mixed, the rules for array syntax apply.
If any explicitly mapped data item is modified in a forall-stmt or where-stmt then arrays in
the forall-header or where-header must be explicitly mapped. In a FORALL construct, if any
explicitly mapped array is modified, all modified arrays must be explicitly mapped. There
is an implicit barrier synchronization after FORALL and WHERE statements if any arrays in
the forall-header or where-header are explicitly mapped.

F.5.7 Synchronization Primitives

A number of synchronization primitives are provided. These primitives include:

Barriers (test, set, wait)
Locks (test, set, clear)
Critical Sections

Events (test, set, wait, clear)

Barriers provides an explicit mechanism for a task to indicate its arrival at a program
point and to wait there until all other tasks arrive. A task may test and optionally wait
at an explicit barrier point. In the following example, a barrier is used to make sure that
block3 is not entered by any task until all tasks have completed execution of blockl.

block1
CALL SET_BARRIER()
block2
CALL WAIT_BARRIER()
block3

The following example performs a similar function as above. However, while waiting for all
tasks to arrive at the barrier, the early tasks perform work within a loop.

block1

CALL SET_BARRIER()

DO WHILE (.NOT. TEST_BARRIER())
block2

END DO

block3

Locks are used to prevent the simultaneous access of data by multiple tasks.

The SET_LOCK (lock) intrinsic sets the mapped integer variable lock atomically. If the
lock is already set, the task that called SET_LOCK is suspended until the lock is cleared by
another task and then sets it. Individual locks may be tested or cleared using result =
TEST_LOCK (lock) and CLEAR_LOCK (lock) respectively.

10

11

12

13

14

15

16

17

18

19

20

21

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A critical section protects access to a section of code rather than to a data object. The
CRITICAL directive marks the beginning of a code region in which only one task can enter
at a time. The END CRITICAL directive marks the end of the critical section. Transfer of
control into or out of a critical section is prohibited.

'HPF$ CRITICAL
GLOBAL_SUM = GLOBAL_SUM + LOCAL_SUM
'HPF$ END CRITICAL

Events are typically used to record the state of a program’s execution and to commu-
nicate that state to another task. Because they do not set locks, as do the lock routines
described earlier, they cannot easily be used to enforce serial access of data. They are suited
to work such as signalling other tasks when a certain value has been located in a search
procedure. There are four routines needed to perform the event functions, and each requires
a mapped argument.

The SET_EVENT (event) routine sets or posts an event; it declares that an action has
been accomplished or a certain point in the program has been reached. A task can post
an event at any time, whether the state of the event is cleared or already posted. The
CLEAR_EVENT (event) routine clears an event, the WAIT_EVENT (event) routine waits until a
particualr event is posted, and the result = TEST_EVENT (event) function returns a logical
value indicating whether a particular event has been posted.

F.5.8 Barrier Removal

You can explicitly remove an implicit barrier after any INDEPENDENT loop, or after any
array syntax statement that modifies explicitly mapped arrays, by using the NO BARRIER

directive.

'HPF$ NO BARRIER

F.5.9 Serial Regions

It is often useful to enter a region where only one task is executing. This is particularly
useful for certain types of I/O. To facilitate this, two directives are provided. In addition,
one may optionally attach a COPY clause to the END MASTER directive which specifies the
private data items whose values should be broadcast to all processors. The syntax of this

directive is:

'HPF$ MASTER

sequential region

'HPF$ END MASTER [, COPY(war [, ware, ..., wvar, |)]

where var is SYMMETRIC private data to be copied to the same named private data on other
Processors.

If a routine is called within a serial region, the routine executes serially; there is no
way to get back to parallel execution within the routine. All explicitly mapped data is
accessible from within routines called in a serial region, but a routine called from within
a serial region cannot allocate explicitly mapped data or remap data. All processors must
participate in the invocation of the serial region. Transfer of control into or out of a serial
region is not permitted.

F.5.10 Libraries

The HPF Local Routine Library is available in HPF_CRAFT. The HPF_LOCAL extrinsic
environment contains a number of libraries that are useful for local SPMD programming and
a number of libraries that allow the user to determine global (rather than local) state infor-
mation. These library procedures take as input the name of a dummy argument and return
information on the corresponding global HPF actual argument. They may only be invoked
by an HPF_CRAFT procedure that was directly invoked by global HPF code. They may
be called only for private data. The libraries reside in a module called HPF_LOCAL _LIBRARY.

The HPF Library is available to HPF_CRAFT when called with data that is explicitly
mapped and all processors are participating in the call. In addition, as in HPF_LOCAL,
the entire HPF Library is available for use with private data. Mixing private and explicitly
mapped data in calls to the HPF library produces undefined behavior.

F.5.11 Parallel Inquiry Intrinsics

These intrinsic functions are provided as an extension to HPF. They return a logical value
that provides information to the programmer about the state of execution in a program.

IN_PARALLEL()
IN_INDEPENDENT ()

F.5.12 Task Identity

MY _PE() may be used to return the local processor number. The physical processors are
identified by an integer in the range of 0 to n-1 where n is the value returned by the
global HPF_LIBRARY function NUMBER_OF _PROCESSORS. Processor identifiers are returned
by ABSTRACT_TO_PHYSICAL, which establishes the one-to-one correspondence between the
abstract processors of an HPF processors arrangement and the physical processors. Also,
the local library function MY_PROCESSOR returns the identifier of the task executing the call.

F.5.13 Parallelism Specification Directives

These directives allow a user to assert that a routine will only be called from within a
parallel region, a serial region, or from within both regions. Without these directives an

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

implementation might be required to generate two versions of code for each routine, de-
pending upon implementation strategies. The directives simply make the generated code

size smaller and remove a test.

'HPF$ PARALLEL ONLY
IHPF$ SERIAL_ONLY
IHPF$ PARALLEL_AND_SERTAL

The default is PARALLEL_ONLY.

F.5.14 The SYMMETRIC Directive

SYMMETRIC variables are private data that are guaranteed to be at the same storage location
on every processor. The feature is beneficial to implementations that provide one-way com-
munication functionality. One task can either get or put data into another task’s symmetric
data location, without involving the other task. There is an implicit barrier synchronization
after SYMMETRIC data is allocated.

REAL PRIV1(100), PRIV2
IHPF$ SYMMETRIC PRIV1, PRIV2

F.5.15 The RESIDENT Directive

The RESIDENT directive can be specified at the loop level and at the routine level. It is
an assertion that the references to particular variables in the routine (or loop) are only
references to data that are local to the task making the assertion. In the following loop, all
references to arrays A, B, and C are local to the task executing each iteration.

REAL A(100), B(100), C(100)

INTEGER IX(100)
'HPF$ DISTRIBUTE A(BLOCK), B(BLOCK), C(BLOCK)
'HPF$ RESIDENT A

'HPF$ INDEPENDENT (I) ON B(I) RESIDENT(C)
DO I =1, 100
A(IX(I)) = B(I) + C(IX(I))
END DO

F.5.16 The ATOMIC UPDATE Directive

In HPF_CRAFT, the ATOMIC UPDATE directive tells the compiler that a particular data item
or the elements of a particular array for a specified operation must be updated atomically.
This can be used within loops or in array syntax and applies to both the elements of an
array with an assignment of a permutation and the elements of an array within a loop.

In the following example, all references to R(IX(I)) occur atomically, thus eliminating
the possibility that different iterations might try to modify the same element concurently.

REAL R(200), S(1000)
INTEGER IX(1000)
'HPF$ DISTRIBUTE R(BLOCK), S(BLOCK), IX(BLOCK)

IHPF$ INDEPENDENT (I) ON S(I)
DO I =1, 1000

|HPF$ ATOMIC UPDATE
R(IX(I)) = R(IX(I)) + S(I)
END DO

F.5.17 The GEOMETRY Directive

The GEOMETRY directive is simliar to a typedef in C, only it is for data mapping. It allows
the user to conveniently change the mappings of many arrays at the same time. It is similar
in many ways to the TEMPLATE directive, but since it is bound to no particular extent it is
sometimes easier to apply.

IHPF$ GEOMETRY geom(d; [, do, ..., dy]1)
IHPF$ DISTRIBUTE (geom) L[::1 wari [, vars, ..., varyl]

Where d; indicates one of the allowable distribution formats.

'HPF$ GEOMETRY GBB(BLOCK, CYCLIC)
REAL A(300,300), B(400,400)
'HPF$ DISTRIBUTE (GBB) :: A, B
! if GBB changes then both A and B change

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

000G The FORTRAN 77 Local
Library

The HPF standard now describes an EXTRINSIC(LANGUAGE='F77',MODEL="'L0OCAL') inter-
face, or EXTRINSIC(F77_LOCAL) to use the keyword identification (see Section 11.6 for its
description), similar in characteristics to the EXTRINSIC (LANGUAGE="'HPF' ,MODEL="'L0OCAL')
and EXTRINSIC(LANGUAGE='FORTRAN',MODEL="'LOCAL') interfaces. This section describes
a set of library routines to make it easier to make use of the F77 _LOCAL interface when pass-
ing distributed array data. These library routines can facilitate, for example, a portable
blend of global data parallel code with preexisting FORTRAN 77-based code using explicit
message passing calls for interprocessor communication. The FORTRAN 77 Local Library
interface described in this section was originally developed as part of Thinking Machines
TMHPF and is now supported by Sun Microsystems Inc. For suggestions, requests, or

corrections concerning this interface, please contact

Sun Microsystems Inc.

High Performance Computing
M/S UCHLO5-104

5 Omni Way

Chelmsford, MA 01824
f77-local-library@sun.com

G.1 Introduction

The basic constraints for the local model (Section 11.1) together with the F77_LOCAL-specific
argument passing options (Section 11.6) define the nature of the F77_LOCAL interface: how
control is to be transferred from a global HPF procedure to a set of local procedures de-
scribed by an EXTRINSIC(F77_LOCAL) procedure interface and how data can be passed be-
tween these two types of procedures: by reference or by descriptor, and with or without tem-
porary local reordering of data to satisfy FORTRAN 77 provisions for sequential, contiguous
storage of array data in Fortran array element order. These alternative methods of argument
passing can be obtained by use of the two special-purpose attributes for extrinsic dummy
arguments defined for LANGUAGE='F77' routines: LAYOUT('F77_ARRAY') (the default) vs.
LAYOUT ('HPF_ARRAY'), and PASSBY('x') (the default) vs. PASS_BY ('HPF _HANDLE').
However, to take advantage of the option allowing one to pass global HPF array “handles”
to local FORTRAN 77 procedures and then obtain information locally about how the local

321

portion of a given parallel array is actually distributed requires special inquiry routines
comparable to the HPF Local Library of functions. Since this library is not only described
as a module, but uses many features such as array-valued functions and optional arguments
not available in FORTRAN 77 code, it is recommended that a modified FORTRAN 77
interface to this library be provided in the manner described below. Furthermore, there is
the problem of describing local portions of parallel arrays in the FORTRAN 77 code used
in each local routine called from a global HPF one. Since assumed-shape syntax may not
be used, explicit shape arrays are required. But it is common for global distribution of
arbitrary sized arrays to result in local portions of arrays that do not have constant shapes
on all processors, and the actual extents in each processor cannot necessarily be predicted
in advance. In order to allow programmers to obtain axis extent information at run time
from the HPF global caller, a special HPF-callable subgrid inquiry subroutine is provided.
A FORTRAN 77 callable version of the same routine is also described below, for flexibility

in programming.

G.2 Summary

e One HPF-callable subgrid inquiry subroutine
HPF_SUBGRID_INFO

e A set of FORTRAN 77-callable inquiry subroutines
F77_SUBGRID_INFO
F77_GLOBAL_ALIGNMENT
F77_GLOBAL DISTRIBUTION
F77_GLOBAL_TEMPLATE
F77_ABSTRACT _TO_PHYSICAL
F77_PHYSICAL_TO_ABSTRACT
F77_LOCAL_TO_GLOBAL
F77_GLOBAL_TO_LOCAL
F77_LOCAL_BLKCNT
F77_LOCAL_LINDEX
F77_LOCAL_UINDEX
F77_GLOBAL_SHAPE
F77_GLOBAL_SIZE
F77_SHAPE
F77_SIZE
F77_MY_PROCESSOR

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

G.3 Global HPF Subgrid Inquiry Routine

The F77_LOCAL library interface includes only one global HPF subroutine, HPF_SUBGRID_INFO,
whose implementation should be added as an extension to the standard HPF Library mod-
ule. TIts purpose is to provide per-processor information about the local subgrids of dis-
tributed arrays. This information is often critical when passing such arrays to local pro-
cedures written in FORTRAN 77, where array argument shapes must be stated explicitly
in the local procedure (except in the last dimension; there are “assumed size” but no “as-
sumed shape” arrays) , but may be expressed in terms of arguments passed at run time
(“adjustable shape arrays”). Thus the subgrid parameters obtained from this subgrid in-
quiry routine can be passed as arguments to the local routines and used there to describe
the extents of the locally visible portions of global HPF arrays, as the example in Section
G.5 will demonstrates.

HPF_SUBGRID_INFO (ARRAY, IERR, DIM, LB, UB, STRIDE,
LB_EMBED, UB_.EMBED, AXIS_MAP)

Description. Gives local information about local subgrid allocation onto each pro-
cessor of a distributed array; callable from a global HPF routine.

Class. Inquiry subroutine.

Arguments.

ARRAY is a nonsequential array of any type, size, shape, or map-
ping. It is an INTENT (IN) argument.

IERR is a scalar integer of default kind. It is an INTENT (0QUT)
argument. Its return value is zero upon successful return
and nonzero otherwise. Errors result if local subgrids
cannot be expressed as array sections of ARRAY.

If any of the optional arguments LB_EMBED, UB_EMBED, or
AXIS_MAP is present, then a nonzero value is also returned
if the compiler does not organize the local data in serial
memory by sequence associating a larger “embedding”
array (see Section G.3.1 below for more explanation).

DIM (optional) is a scalar integer of default kind. It is an INTENT (IN)
argument. DIM indicates the axis along which return val-
ues are desired. If DIM is not present, values are returned
for all axes.

LB (optional) is an INTENT (OUT), default integer array. If this argu-
ment is present, and if the value returned in IERR is zero,
the values returned in array LB are the lower bounds in

global coordinates of each processor’s subgrid, along one
(if DIM is present) or each dimension of ARRAY.

UB (optional) is an INTENT (OUT), default integer array. If this argu-
ment is present, and if the value returned in IERR is zero,
the values returned in array UB are the upper bounds in
global coordinates of each processor’s subgrid, along one
(if DIM is present) or each dimension of ARRAY.

STRIDE (optional) is an INTENT (OUT), default integer array. If this argu-
ment is present, and if the value returned in IERR is zero,
the values returned in array STRIDE are the strides in lo-
cal memory between elements of each processor’s subgrid,
along one (if DIM is present) or each dimension of ARRAY.

LB_EMBED (optional) is an INTENT (OUT), default integer array. If this ar-
gument is present, and if the value returned in IERR is
zero, the values returned in array LB_EMBED are the lower
bounds in global coordinates of the actual global array
elements allocated on each processor, possibly a superset
of the user-visible subgrid, along one (if DIM is present)
or each dimension of ARRAY.

UB_EMBED (optional) is an INTENT (0UT), default integer array. If this ar-
gument is present, and if the value returned in IERR is
zero, the values returned in array UB_EMBED are the upper
bounds in global coordinates of the actual global array el-
ements allocated on each processor, possibly a superset
of the user-visible subgrid, along one (if DIM is present)
or each dimension of ARRAY.

AXIS_MAP (optional) is a rank 2, INTENT (OUT), default integer array. If this
argument is present, its shape must be at least [n,r],
where n is the number of processors and r is the rank of
ARRAY.

If the value returned in IERR is zero, the values returned
in AXIS MAP(i,1:r) represent the numbers of the axes
of the subgrid on processor i from fastest varying to
slowest varying, and form a permutation of the sequence
1,2,...,r.

For the last six arguments, LB, UB, STRIDE, LB_EMBED, UB_EMBED, and AXIS_MAP, each
array has a first axis of extent at least n, where n is the number of processors, and the first
n indices of that axis of each array must be distributed (perhaps via an explicit CYCLIC or
BLOCK distribution) one index per processor. If a second dimension is needed, it should be
a collapsed axis of extent at least equal to the rank of ARRAY.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

If HPF_SUBGRID_INFO is called, and the elements of ARRAY that are local to any particular
processor are not representable as an array section of the global user array, then a nonzero
value is returned for IERR. Otherwise, if any of the optional arguments LB, UB, or STRIDE
is present, then the lower bounds, upper bounds, or strides, respectively, that describe the
local array sections are returned in terms of one-based, global coordinates.

G.3.1 Subgrid Inquiries Involving Embedding Arrays

In the common case in which the elements of each local subgrid of the global array argument
are distributed across processors, with no overlap, and allocated in local memory like a local
FORTRAN 77 array, as a contiguous sequence of elements in Fortran array element order,
these three last optional arguments would not be required.

However, some implementations may choose less common layouts in local memory,
that involve “embedding” these elements in a larger array section of equal rank that s
sequence-associated in serial memory. For example, alignment of axes of arrays in different
orders may result in a permuting embedding of the subgrid. Or axes of subgrids map be
padded with ghost cells, either for stencil optimizations or to achieve same-size subgrids on
all nodes.

In variations such as these, we may still view the subgrid as being “embedded” in a
sequence associated array which may be accessible in F77_LOCAL operations, if the permu-
tation of axes, shape of any embedding array, and offsets into that array can be obtained at
runtime. The last three arguments of HPF_SUBGRID_INFO are provided to allow programmers
to obtain this information when it is appropriate, with the help of the IERR flag to signal
when this is not the case.

In this mapping, local memory has been allocated for a larger array section, with co-
ordinates (LB_LEMBED : UB_EMBED : STRIDE). The coordinates of the actual computational
elements are limited to the subset (LB : UB : STRIDE). The sequence association is gen-
eralized to an arbitrary mapping of axes. Here, AXIS MAP numbers the axes from fastest
varying to slowest varying. If LB_.EMBED, UB_EMBED, or AXIS_MAP is specified in a call to
HPF_SUBGRID_INFO but ARRAY does not satisfy the assumptions of this mapping model, then

a nonzero value is returned for IERR.

G.4 Local FORTRAN 77 Inquiry Routines

Here the F77-callable inquiry subroutines are described briefly. These provide essentially
the same capability as the combination of the HPF intrinsic array inquiry functions such
as SHAPE and SIZE, together with the HPF LOCAL LIBRARY inquiry routines. The subrou-
tine F77_SUBGRID_INFO serves as a local counterpart to the globally callable subroutine
HPF_SUBGRID_INFO described above. In all of the following:

e ARRAY is a dummy argument passed in from a global HPF caller using the LAYOUT
('"HPF_ARRAY') attribute and declared within the FORTRAN 77 local subroutine as
a scalar integer variable. It is an INTENT (IN) argument.

e DIM is a scalar integer of default kind. It is an INTENT (IN) argument. This argument
specifies a particular axis of the global array associated with ARRAY or, if DIM = -1,

inquiry is for all axes.

An “inquiry result” is an INTENT (OUT) argument. If DIM = -1, it is a rank-one array
of size equal to at least the rank of the global array associated with ARRAY, returning
information associated with all axes. If DIM is positive, the “inquiry result” is a scalar,
returning information only for the axis indicated by DIM.

The arguments are defined in the same way as for the corresponding HPF or HPF_LOCAL
routines unless otherwise noted. See the description of HPF_SUBGRID_INF0 above and
Section 11.7.1 for full specifications of the similarly-named HPF_LOCAL LIBRARY pro-
cedures.

F77_SUBGRID_INFO (ARRAY, IERR1, IERR2, DIM, LB, UB, STRIDE,
LB_EMBED, UB_EMBED, AXIS_MAP)

Description. This is a FORTRAN 77-callable version of the HPF subroutine
HPF_SUBGRID_INFO.

Arguments.

IERR1 is a scalar integer of default kind. It isan INTENT (0OUT)
argument. Its return value is zero if LB, UB, and STRIDE
were determined successfully and nonzero otherwise.

IERR2 is a scalar integer of default kind. It is an INTENT

(OUT) argument. Its return value is zero if LB_.EMBED and
UB_EMBED were determined successfully and nonzero oth-

erwise.

LB, UB, STRIDE, LB EMBED, UB_EMBED, AXIS MAP are “inquiry results” of default
integer type. They are the lower and upper bounds and
strides of the array sections describing the local data (in
terms of global indices), the lower and upper bounds of
the embedding arrays (again, in terms of global indices),
and the axes of the embedding arrays to which the axes
of ARRAY are mapped.

F77_GLOBAL_ALIGNMENT (ALIGNEE, LB, UB, STRIDE, AXIS_ MAP,
IDENTITY MAP, DYNAMIC, NCOPIES)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL subrou-
tine GLOBAL_ALIGNMENT. All but the first are INTENT (OUT) arguments whose return
values are as specified by the corresponding HPF routine.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1 Arguments.

s ALIGNEE is a dummy argument passed in from global HPF. It is
. an INTENT (IN) argument.
> LB, UB, STRIDE, AXIS MAP are integer arrays of rank one. Their size must be at

least equal to the rank of the global HPF array associated
with ALIGNEE.

o IDENTITY MAP, DYNAMIC are scalar logicals.
10

- NCOPIES is a scalar integer of default kind.
13 F77_GLOBAL DISTRIBUTION (DISTRIBUTEE, AXIS TYPE,
14 AXIS_INFO, PROCESSORS_RANK, PROCESSORS_SHAPE)

15

16 Description. This is a FORTRAN 77-callable version of the HPF_LOCAL subroutine
1 GLOBAL_DISTRIBUTION. All but the first are INTENT (OUT) arguments whose return

e values are as specified by the corresponding HPF routine.

19

20

Arguments.
21
2 DISTRIBUTEE is a dummy argument passed in from global HPF. It is
2 an INTENT (IN) argument.
24
25 AXIS_TYPE is a CHARACTER#*9 array of rank one. Its size must be at
26 least equal to the rank of the global HPF array associated
27 with DISTRIBUTEE.
28
20 AXIS_INFO is a default integer array of rank one. Its size must be at
30 least equal to the rank of the global HPF array associated
31 with DISTRIBUTEE.
32
u PROCESSORS_RANK is a scalar of default integer type.
34 PROCESSORS_SHAPE is an integer array of rank one. Its size must be at least

35

equal to the value returned by PROCESSORS_RANK.

36

37

F77_ GLOBAL_ TEMPLATE (ALIGNEE, TEMPLATE RANK, LB, UB,
3 AXIS_-TYPE, AXIS_INFO, NUMBER_ALIGNED, DYNAMIC)

40

Description. Thisis a FORTRAN 77-callable version of the HPF_LOCAL subroutine

41

" GLOBAL_TEMPLATE. All but the first are INTENT (OUT) arguments whose return values
43 are as specified by the corresponding HPF routine.

44

45 Arguments.

46

. ALIGNEE is a dummy argument passed in from global HPF. It is

a8 an INTENT (IN) argument.

TEMPLATE RANK is a scalar integer of default kind.

LB, UB, AXIS_INFO are integer arrays of rank one. Their size must be at least
equal to the rank of the align-target to which the global
HPF array associated with ALIGNEE is ultimately aligned.

AXIS_TYPE is a CHARACTER*10 array of rank one. Its size must be at
least equal to the rank of the align-target to which the
global HPF array associated with ALIGNEE is ultimately

aligned.
NUMBER_ALIGNED is a scalar integer of default kind.
DYNAMIC is a scalar logical.

F77_ABSTRACT_TO_PHYSICAL(ARRAY, INDEX, PROC)

Description. Thisis a FORTRAN 77-callable version of the HPF_LOCAL subroutine
ABSTRACT_TO_PHYSICAL.

Arguments.
INDEX is a rank-one, INTENT (IN), integer array.
PROC is a scalar, INTENT (QUT), integer.

F77_ PHYSICAL_TO_ABSTRACT(ARRAY, PROC, INDEX)

Description. Thisis a FORTRAN 77-callable version of the HPF_LOCAL subroutine
PHYSICAL_TO_ABSTRACT.

Arguments.
PROC is a scalar, INTENT (IN), integer.
INDEX is a rank-one, INTENT (0UT), integer array.

F77 LOCAL_TO _GLOBAL(ARRAY, L INDEX, G INDEX)

Description. Thisis a FORTRAN 77-callable version of the HPF_LOCAL subroutine
LOCAL_TO_GLOBAL.

Arguments.

L_INDEX is a rank-one, INTENT (IN), integer array.

G_INDEX is a rank-one, INTENT (0UT), integer array.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

F77_GLOBAL_TO_LOCAL(ARRAY, G_.INDEX, L INDEX, LOCAL,

NCOPIES, PROCS)

Description. Thisis a FORTRAN 77-callable version of the HPF_LOCAL subroutine

GLOBAL_TO_LOCAL.

Arguments.

G_INDEX
L_INDEX
LOCAL

NCOPIES

PROCS

is a rank-one, INTENT (IN), integer array.
is a rank-one, INTENT (0UT), integer array.
is a scalar, INTENT (0QUT), logical.

is a scalar, INTENT (QUT), integer.

is a rank-one, integer array whose size is at least the
number of processors that hold copies of the identified

element.

F77_ LOCAL BLKCNT(L_BLKCNT, ARRAY, DIM, PROC)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function

LOCAL_BLKCNT.

Arguments.

L_BLKCNT

PROC

is an “inquiry result” of type integer.

is a scalar integer of default kind. It must be a valid
processor number or, if PROC = -1, the value returned
by F77 MY PROCESSOR() is implied.

F77_ LOCAL _LINDEX(L LINDEX, ARRAY, DIM, PROC)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function

LOCAL_LINDEX.

Arguments.

L_LINDEX

DIM

PROC

is a rank-one, integer array of size equal to at least the
value returned by F77_LOCAL_BLKCNT.

may not be -1.

is a scalar integer of default kind. It must be a valid
processor number or, if PROC = -1, the value returned
by F77_MY_PROCESSOR() is implied.

F77_LOCAL_UINDEX(L_.UINDEX, ARRAY, DIM, PROC)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function
LOCAL_UINDEX.

Arguments.

L_UINDEX is a rank-one, integer array of size equal to at least the
value returned by F77_LOCAL_BLKCNT.

DIM may not be -1.

PROC is a scalar integer of default kind. It must be a valid

processor number or, if PROC = -1, the value returned
by F77 MY PROCESSOR() is implied.

F77_GLOBAL_SHAPE(SHAPE, ARRAY)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function
GLOBAL_SHAPE.

Arguments.

SHAPE is a rank-one, integer array of size equal to at least the
rank of the global array associated with ARRAY. Its return
value is the shape of that global array.

F77_GLOBAL_SIZE(SIZE, ARRAY, DIM)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function
GLOBAL_SIZE.

Arguments.

SIZE is a scalar integer equal to the extent of axis DIM of the
global array associated with ARRAY or, if DIM = -1, the
total number of elements in that global array.

F77_SHAPE(SHAPE, ARRAY)

Description. This is a FORTRAN 77-callable version of the HPF intrinsic SHAPE,
as it would behave as called from HPF_LOCAL.

Arguments.

SHAPE is a rank-one, integer array of size equal to at least the
rank of the subgrid associated with ARRAY. Its return
value is the shape of that subgrid.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

F77_SIZE(SIZE, ARRAY, DIM)

Description. This is a FORTRAN T77-callable version of the HPF intrinsic SIZE,
as it would behave as called from HPF_LOCAL.

Arguments.

SIZE is a scalar integer equal to the extent of axis DIM of the
subgrid associated with ARRAY or, if DIM = -1, the total
number of elements in that subgrid.

F77_ MY _PROCESSOR(MY _PROC)

Description. This is a FORTRAN 77-callable version of the HPF_LOCAL function
MY_PROCESSOR.

Arguments.

MY_PROC is a scalar, INTENT (QOUT), integer. Its value is the iden-
tifying number of the physical processor from which this
call is made.

G.5 Programming Example Using HPF_SUBGRID_INFO

G.5.1 HPF Caller

PROGRAM EXAMPLE
! Declare the data array and a verification copy
INTEGER, PARAMETER :: NX = 100, NY = 100
REAL, DIMENSION(NX,NY) :: X, Y
'HPF$ DISTRIBUTE(BLOCK,BLOCK) :: X, Y
! The global sum will be computed
! by forming partial sums on the processors
REAL PARTIAL_SUM(NUMBER_OF_PROCESSORS())
'HPF$ DISTRIBUTE PARTIAL_SUM(BLOCK)
! Local subgrid parameters are declared per processor
! for a rank-two array
INTEGER, DIMENSION(NUMBER_OF_PROCESSORS(),2)
& LB, UB, NUMBER
'HPF$ DISTRIBUTE(BLOCK,*) :: LB, UB, NUMBER
! Define interfaces
INTERFACE
EXTRINSIC(F77_LOCAL) SUBROUTINE LOCAL1
& (LB1, UB1, LB2, UB2, NX, X)
! Arrays LB1, UB1, LB2, UB2, and X are passed by default

! as LAYOUT('F77_ARRAY') and PASS_BY('x')
INTEGER, DIMENSION(:) :: LB1, UB1, LB2, UB2
INTEGER NX
REAL X(:,:)
'HPF$ DISTRIBUTE(BLOCK) :: LB1, UB1, LB2, UB2
'HPF$ DISTRIBUTE(BLOCK,BLOCK) :: X
END
EXTRINSIC(F77_LOCAL) SUBROUTINE LOCAL2(N,X,R)
! Arrays N, X, and R are passed by default
! as LAYOUT('F77_ARRAY') and PASS_BY('x')
INTEGER N(:)
REAL X(:,:), R(:)
'HPF$ DISTRIBUTE N(BLOCK)
'HPF$ DISTRIBUTE X(BLOCK,BLOCK)
'HPF$ DISTRIBUTE R(BLOCK)
END
END INTERFACE

! Determine result using only global HPF
! Initialize values
FORALL (I=1:NX,J=1:NY) X(I,J) =1 + (J-1) * NX
! Determine and report global sum
PRINT *, 'GLOBAL HPF RESULT: ',SUM(X)
! Determine result using local subroutines
! Initialize values (assume stride = 1)
CALL HPF_SUBGRID_INFO(Y, IERR, LB=LB, UB=UB)
IF (IERR.NE.O) STOP 'ERROR!'
CALL LOCAL1(LB(:,1), UB(:,1), LB(:,2), UB(:,2), NX, Y)
! Determine and report global sum
NUMBER = UB - LB + 1
CALL LOCAL2 (NUMBER(:,1) * NUMBER(:,2) , Y , PARTIAL_SUM)
PRINT *, 'F77_LOCAL RESULT #1 : ',SUM(PARTIAL_SUM)
END

G.5.2 FORTRAN 77 Callee

SUBROUTINE LOCAL1(LB1, UB1, LB2, UB2, NX, X)
! The global actual arguments passed to LB1, UB1, LB2, and UB2
! have only one element apiece and so can be treated as scalars
! in the local Fortran 77 procedures

INTEGER LB1, UB1, LB2, UB2
! NX contains the global extent of the first dimension

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

! of the global array associated with local array X
INTEGER NX
! Note that X may have no local elements.
REAL X (LB1 : UB1 , LB2 : UB2)
! Initialize the elements of the array, if any
DO J = LB2, UB2
DO I = LB2, UB2
X(I,J) =1+ (J-1) * NX
END DO
END DO
END

SUBROUTINE LOCAL2(N,X,R)
! Here, the rank of the original array is unimportant
! Only the total number of local elements is needed
! INTEGER N

REAL X(N), R
! If N is zero, local array X has no elements, but R
! still computes the correct local sum

R =0.
DOI=1, N

R =R + X(I)
END DO
END

G.6 Programming Example Using F77-Callable Inquiry Subroutines

This example performs only the initialization of the above example. It illustrates use of the
F77-callable inquiry routines on descriptors passed from HPF, as well as the addressing of
uncompressed local subgrid data in terms of “embedding arrays.”

G.6.1 HPF Caller

PROGRAM EXAMPLE
INTEGER, PARAMETER :: NX = 100, NY = 100
REAL, DIMENSION(NX,NY) :: X
'HPF$ DISTRIBUTE(BLOCK,BLOCK) :: X
! Local subgrid parameters are declared per processor
! for a rank-two array
INTEGER, DIMENSION(NUMBER_OF_PROCESSORS(),2)
& LB, UB, LB_EMBED, UB_EMBED
'HPF$ DISTRIBUTE(BLOCK,*) :: LB, UB, LB_EMBED, UB_EMBED

! Define interfaces

INTERFACE
EXTRINSIC(F77_LOCAL) SUBROUTINE LOCAL1(
LB1, UB1, LB_EMBED1, UB_EMBED1,
LB2, UB2, LB_EMBED2, UB_EMBED2, X, X_DESC)
INTEGER, DIMENSION(:)
& LB1, UB1, LB_EMBED1, UB_EMBED1,
& LB2, UB2, LB_EMBED2, UB_EMBED2
X is passed twice, both times without local reordering.

&

First, it is passed by reference for accessing array elements.
REAL, DIMENSION(:,:), LAYOUT('HPF_ARRAY'),
& PASS_BY('*') 0 X
It is also passed by descriptor for use in F77 LOCAL
LIBRARY subroutines only.
REAL, DIMENSION(:,:), LAYOUT('HPF_ARRAY'),
& PASS_BY ('HPF_HANDLE') :: X_DESC

'HPF$ DISTRIBUTE(BLOCK) :: LB1, UB1, LB_EMBED1, UB_EMBED1
'HPF$ DISTRIBUTE(BLOCK) :: LB2, UB2, LB_EMBED2, UB_EMBED2
'HPF$ DISTRIBUTE(BLOCK,BLOCK) :: X

END
END INTERFACE
Initialize values
(Assume stride = 1 and no axis permutation)
CALL HPF_SUBGRID_INFO(X, IERR,
& LB=LB, LB_EMBED=LB_EMBED,
& UB=UB, UB_EMBED=UB_EMBED)
IF (IERR.NE.O) STOP 'ERROR!'
CALL LOCAL1(
& LB(:,1), UB(:,1), LB_EMBED(:,1), UB_EMBED(:,1),
& LB(:,2), UB(:,2), LB_EMBED(:,2), UB_EMBED(:,2), X, X)
END

G.6.2 FORTRAN 77 Callee

SUBROUTINE LOCAL1(
& LB1, UB1, LB_EMBED1, UB_EMBEDI1,
& LB2, UB2, LB_EMBED2, UB_EMBED2, X, X_DESC)
INTEGER LB1, UB1, LB_EMBED1, UB_EMBED1
INTEGER LB2, UB2, LB_EMBED2, UB_EMBED2
The subgrid has been passed in its 'embedded' form
REAL X (LB_EMBED1 : UB_EMBED1 , LB_EMBED2 : UB_EMBED2)
Locally X_DESC is declared as an INTEGER
INTEGER X_DESC

10

11

13

14

15

16

17

18

19

20

34

35

36

37

38

39

40

41

42

43

44

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

! Get the global extent of the first axis
! This is an HPF_LOCAL type of inquiry routine with an

'F77_"' prefix
CALL F77_GLOBAL_SIZE(NX,X,1)
Otherwise, initialize elements of the array

! Loop only over actual array elements

DO J = LB2, UB2
DO I = LB2, UB2
X(I,J) =1+ (J-1) * NX
END DO
END DO
END

