
Rethinking Distributions in HPF

How I Would Address a Fundamental
Shortcoming of the Language

Ken Kennedy
Center for High Performance Software

Rice University

http://www.cs.rice.edu/~ken/Presentations/HPF2000Keynote.pdf

Center for High Performance Software

Center for High Performance Software

Collaborators

Bradley Broom

Arun Chauhan

Keith Cooper

Jack Dongarra

Rob Fowler

Dennis Gannon

Lennart Johnsson

John Mellor-Crummey

John Reynders

Linda Torczon

Center for High Performance Software

Status of Scalable Parallelism
• Dream

—virtually limitless computing power at low cost
—performance scalable from one to thousands of processors
—easy portable programming

• Reality
—successful at only moderate levels of scalability
—modest progress in programmability and scalability
— limited penetration in industry

– independent software vendors (ISVs) still reluctant
– limited protection of programming investment

• Remedy: Architecture-Independent Programming
—a programming language and its compilers support architecture-

independent parallel programming if, for each target architecture,
– compiled code ≅ hand code for same algorithm

Center for High Performance Software

HPF Goals

• Support for Scalable Parallel Systems
—scaling from one to thousands of processors

• Focus on Data Parallelism
—parallelism through subdivision of data domain

• Machine Independent Programming Support
—object program achieves performance comparable to hand-coded

MPI on each target machine on the same algorithm

• High Level of Abstraction
—more accessible programming model

– single thread of control
– shared memory
– implicit generation of communication

Center for High Performance Software

HPF Strategy

Fortran 90

HPF

IBM
SP-2CM-2

HP/Convex
SPP2000

Data Distribution
Directives

Sequential
Machine

Free

Center for High Performance Software

Problems for HPF
• Compilers slow to mature

—Fortran 90 features supported inconsistently
—compilation for highest efficiency complex
— initially, efficiency of object programs unsatisfactory
—early users may become discouraged

• Library support lacking
—no CMSSL equivalent

• Needed features are missing
—support for irregular problems
—task parallelism
—high performance input/output

• Complex relationship between program and performance
—explanatory and diagnostic tools are needed

Center for High Performance Software

Problems for HPF
• Compilers slow to mature

—Fortran 90 features supported inconsistently
—compilation for highest efficiency complex
— initially, efficiency of object programs unsatisfactory
—early users may become discouraged

• Library support lacking
—no CMSSL equivalent

• Needed features are missing
—support for irregular problems
—task parallelism
—high performance input/output

• Complex relationship between program and performance
—explanatory and diagnostic tools are needed

Much R&D, but
lasting impression

Still a problem

Solutions available

Still a big problem

OpenMP?

Center for High Performance Software

Rethinking HPF
• Language Complexity

—Adopt the OpenMP directives for SMP parallelism
—Simplify the interprocedural handling of distributions

– Go back to the original Fortran D idea:
 Interprocedural propagation of distributions
 With support for coding distribution-independent libraries

• Performance Issues
—Embrace the HPF/JA extensions (Reflect, On Home Local)
—Open-source HPF Library
—Optimize the extrinsic interface

• Usability
—Make it possible to extend the notion of distribution

– Currently, HPF only allows built-in distributions

Center for High Performance Software

Idea: Encapsulated Distributions

• HPF’s Fundamental Idea
—Separate distribution from data structure
—Hide issues of data movement from the user

• Problem
—Built-in distributions are not sufficient for some problems
—Expert user wants more control over distribution and performance

• Solution
—Make it possible to add new distributions

– DISTRIBUTE A(Hilbert2D)
where Hilbert2D is a distribution library

• Question:
—What does it mean to be a distribution?

Center for High Performance Software

What is a Distribution?

• Mapping from arrays to storage
—According to some paradigm

• Must provide a minimum set of methods
—Get(A,I,J), Put(A,I,J)
—Get(A,iteratorIJ), Put(A,iteratorIJ)

– Where iteratorIJ = (1:N,J) or (1:N,1:M:2) or ((I:I), I = 1:N)
—Owner(A,I,J), Owners(A,iteratorIJ)
—Reflect (fill overlap regions)
—Global operators (shift, global sum)
—Rebalance
—Redistribute(Distlib2)

• Must do what compilers need to achieve performance

Center for High Performance Software

Advantages
• New distributions can be added as needed

—Open source community
—Current distributions are special cases

– Although we need to keep the built-in distributions (more later)
—Simplifies view of interesting new technologies

– Out-of-core data distribution

• Expert user retains more control over performance
—Manages own distribution
—Provides communication primitives as needed

– shift, global sum
—Can include and manage ghost regions
—Can design adaptivity strategy

Center for High Performance Software

Problems
• Performance

—Current compilers get mileage from knowing the details of the
distribution
– For example, in determining which computations require

communication
– Rice dHPF uses integer set framework to reason about regions

requiring communication
—What do we do if the distribution is encapsulated in a collection of

methods?
– Owner(A(I,J)) is a case in point

• Reliability
—What if designer constructs incorrect distributions?

• Solution Strategy:
—Extensive preliminary analysis of distribution library

Detour: Support for High-Level
Domain-Specific Programming

Telescoping Languages: Generating
Problem-Solving Sytems from Annotate

Libraries

Center for High Performance Software

Center for High Performance Software

Programming Productivity
• Challenges

—programming is hard
—professional programmers are in short supply
—high performance will continue to be important

Center for High Performance Software

Programming Productivity
• Challenges

—programming is hard
—professional programmers are in short supply
—high performance will continue to be important

• One Strategy: Make the End User a Programmer
—professional programmers develop components
—users integrate components using:

– problem-solving environments (PSEs)
– scripting languages (possibly graphical)

 examples: Visual Basic, Tcl/Tk, AVS, Khoros

Center for High Performance Software

Programming Productivity
• Challenges

—programming is hard
—professional programmers are in short supply
—high performance will continue to be important

• One Strategy: Make the End User a Programmer
—professional programmers develop components
—users integrate components using:

– problem-solving environments (PSEs)
– scripting languages (possibly graphical)

 examples: Visual Basic, Tcl/Tk, AVS, Khoros

• Compilation for High Performance
—translate scripts and components to common intermediate language
—optimize the resulting program using interprocedural methods

Center for High Performance Software

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Center for High Performance Software

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Intermediate
Code

Intermediate
CodeTranslatorTranslator

Center for High Performance Software

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Intermediate
Code

Intermediate
Code

Global
Optimizer
Global

Optimizer

TranslatorTranslator

Center for High Performance Software

Code
Generator
Code

Generator

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Intermediate
Code

Intermediate
Code

Global
Optimizer
Global

Optimizer

TranslatorTranslator

Center for High Performance Software

Code
Generator
Code

Generator

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Intermediate
Code

Intermediate
Code

Global
Optimizer
Global

Optimizer

TranslatorTranslator

Problem: long compilation times,
even for short scripts!

Center for High Performance Software

Code
Generator
Code

Generator

Script-Based Programming

Component
Library

Component
Library

User
Library
User
Library

ScriptScript

Intermediate
Code

Intermediate
Code

Global
Optimizer
Global

Optimizer

TranslatorTranslator

Problem: long compilation times,
even for short scripts!

Problem: expert knowledge on
specialization lost

Center for High Performance Software

Telescoping Languages

L1 Class
Library

L1 Class
Library

Center for High Performance Software

Telescoping Languages

L1 Class
Library

L1 Class
Library

Compiler
Generator
Compiler
Generator

L1 CompilerL1 Compiler

Could run for hours

Center for High Performance Software

Telescoping Languages

L1 Class
Library

L1 Class
Library

ScriptScript

Compiler
Generator
Compiler
Generator

L1 CompilerL1 CompilerScript
Translator
Script

Translator

Optimized
Application
Optimized
Application

Vendor
Compiler
Vendor
Compiler

Could run for hours

understands
library calls
as primitives

Center for High Performance Software

Telescoping Languages: Advantages

• Compile times can be reasonable
—More compilation time can be spent on libraries

– Amortized over many uses
—Script compilations can be fast

– Components reused from scripts may be included in libraries

Center for High Performance Software

Telescoping Languages: Advantages

• Compile times can be reasonable
—More compilation time can be spent on libraries

– Amortized over many uses
—Script compilations can be fast

– Components reused from scripts may be included in libraries

• High-level optimizations can be included
—Based on specifications of the library designer

– Properties often cannot be determined by compilers
– Properties may be hidden after low-level code generation

Center for High Performance Software

Telescoping Languages: Advantages

• Compile times can be reasonable
—More compilation time can be spent on libraries

– Amortized over many uses
—Script compilations can be fast

– Components reused from scripts may be included in libraries

• High-level optimizations can be included
—Based on specifications of the library designer

– Properties often cannot be determined by compilers
– Properties may be hidden after low-level code generation

• User retains substantive control over language performance
—Mature code can be built into a library and incorporated into

language

Center for High Performance Software

Applications

• Matlab Compiler
—Automatically generated from LAPACK or ScaLAPACK

– With help via annotations from the designer

• Automatic Generation of POOMA
—Data structure library implemented via template expansion in C++
—Long compile times, missed optimizations

• Generator for Grid Computations
—GrADS: automatic generation of NetSolve

• Flexible Data Distributions
—Failing of HPF: inflexible distributions
—Data distribution == collection of interfaces that meet specs
—Compiler applies standard transformations

Center for High Performance Software

Application to HPF

HPF
Translator

HPF
Translator

Fortran 90
Program

Fortran 90
Program

Global
Optimizer
Global

Optimizer
MPI Code
Generator
MPI Code
Generator

Center for High Performance Software

Application to HPF

Distribution
Library

Distribution
Library

HPF
Translator

HPF
Translator

Fortran 90
Program

Fortran 90
Program

Global
Optimizer
Global

Optimizer
MPI Code
Generator
MPI Code
Generator

Distribution
Precompiler
Distribution
Precompiler

Center for High Performance Software

Application to HPF

Distribution
Library

Distribution
Library

HPF
Translator

HPF
Translator

Fortran 90
Program

Fortran 90
Program

Global
Optimizer
Global

Optimizer
MPI Code
Generator
MPI Code
Generator

Distribution
Precompiler
Distribution
Precompiler

Distribute (Hilbert2D): A,B
Do i = 1,100

A(i) = B(i) + C
Enddo

A.putBlock(1,100,
B.getBlock(1,100) + C)

Center for High Performance Software

Leverage from Telescoping Languages

• High-level Specifications
—Provide information about when certain optimizations can be done

– Access vectorization
—Suggest specialized substitutions unique to distribution

• Providing Knowledge to the Compiler
—If the owner(A(I,J)) functionality is particularly simple, substitute

the code inline
– Automatic inversion possible

—Determination whether distribution is known at compile time
– If it is, inspector can be embedded in compilation phase

—Compiler can specialize run-time distributions to program context
– partial evaluation of distribution

Center for High Performance Software

Example
• Unknown owner

DO I = 1, N

DO J= 1,N;

A(I,J) = A(I+1,J) + C

ENDDO

ENDDO

• Becomes
DO (I,J) in OwnedBy(pI,pJ)

IF (Owner(A(I+1,J))≠(pI,pJ)) THEN
Get(A(I+1,J)) into X

A(I,J) = X + C ! All local

ELSE

A(I,J) = A(I+1,J) + C

ENDIF

ENDDO

Need inverse!

Center for High Performance Software

Example Continued
• Recursive bisection load balance:

—Processor (pI,pJ) owns
– Iterations of I loop such that LowI(pI) ≤ I ≤ HiI(pI)
– Iterations of J loop such that LowJ(pI,pJ) ≤ J ≤ HiJ(pI,pJ)

VPUT(A(LoI(pI), LoJ(pI,pJ):HiJ(pI,pJ)) to (pI-1,pJ)

DO I = LoI(pI),HiI(pI)-1

DO J = LoJ(pI,pJ), HiJ(pI,pJ)

A(I,J) = A(I+1,J) + C

ENDDO

ENDDO

VGET(A(HiI(pI)+1,LoJ(pI,pJ):HiJ(pI,pJ)) into arrayX

DO J = LoJ(pI,pJ), HiJ(pI,pJ)

 A(I,J) = arrayX(J) + C

ENDDO

Center for High Performance Software

Summary
• Mixed Reviews on HPF

—Many strengths: separation of distribution from data
—Many weaknesses

– Performance and usability

• Rethinking HPF
—Need to focus on issues that will help users solve problems

– Need simplicity, generality and control

• Idea: Extensible Distributions
—Distribution is a class defining mapping of data to storage
—Any class providing minimal set of methods may be used

• Compilation Technologies
—Existing HPF compilers must be rewritten
—Telescoping languages strategy can buy back performance

http://www.cs.rice.edu/~ken/Presentations/HPF2000Keynote.pdf

