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Status of Scalable Parallelism
• Dream

—virtually limitless computing power at low cost
—performance scalable from one to thousands of processors
—easy portable programming

• Reality
—successful at only moderate levels of scalability
—modest progress in programmability and scalability
— limited penetration in industry

– independent software vendors (ISVs) still reluctant
– limited protection of programming investment

• Remedy: Architecture-Independent Programming
—a programming language and its compilers support architecture-

independent parallel programming if, for each target architecture,
– compiled code ≅  hand code for same algorithm
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HPF Goals

• Support for Scalable Parallel Systems
—scaling from one to thousands of processors

• Focus on Data Parallelism
—parallelism through subdivision of data domain

• Machine Independent Programming Support
—object program achieves performance comparable to hand-coded

MPI on each target machine on the same algorithm

• High Level of Abstraction
—more accessible programming model

– single thread of control
– shared memory
– implicit generation of communication
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HPF Strategy

Fortran 90

HPF

IBM
SP-2CM-2

HP/Convex
SPP2000

Data Distribution 
Directives

Sequential 
Machine

Free
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Problems for HPF
• Compilers slow to mature

—Fortran 90 features supported inconsistently
—compilation for highest efficiency complex
— initially, efficiency of object programs unsatisfactory
—early users may become discouraged

• Library support lacking
—no CMSSL equivalent

• Needed features are missing
—support for irregular problems
—task parallelism
—high performance input/output

• Complex relationship between program and performance
—explanatory and diagnostic tools are needed
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—compilation for highest efficiency complex
— initially, efficiency of object programs unsatisfactory
—early users may become discouraged

• Library support lacking
—no CMSSL equivalent

• Needed features are missing
—support for irregular problems
—task parallelism
—high performance input/output

• Complex relationship between program and performance
—explanatory and diagnostic tools are needed

Much R&D, but 
lasting impression

Still a problem

Solutions available

Still a big problem

OpenMP?
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Rethinking HPF
• Language Complexity

—Adopt the OpenMP directives for SMP parallelism
—Simplify the interprocedural handling of distributions

– Go back to the original Fortran D idea:
 Interprocedural propagation of distributions
 With support for coding distribution-independent libraries

• Performance Issues
—Embrace the HPF/JA extensions (Reflect, On Home Local)
—Open-source HPF Library
—Optimize the extrinsic interface

• Usability
—Make it possible to extend the notion of distribution

– Currently, HPF only allows built-in distributions
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Idea: Encapsulated Distributions

• HPF’s Fundamental Idea
—Separate distribution from data structure
—Hide issues of data movement from the user

• Problem
—Built-in distributions are not sufficient for some problems
—Expert user wants more control over distribution and performance

• Solution
—Make it possible to add new distributions

– DISTRIBUTE A(Hilbert2D)
where Hilbert2D is a distribution library

• Question:
—What does it mean to be a distribution?
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What is a Distribution?

• Mapping from arrays to storage
—According to some paradigm

• Must provide a minimum set of methods
—Get(A,I,J), Put(A,I,J)
—Get(A,iteratorIJ), Put(A,iteratorIJ)

– Where iteratorIJ = (1:N,J) or (1:N,1:M:2) or ((I:I), I = 1:N)
—Owner(A,I,J), Owners(A,iteratorIJ)
—Reflect (fill overlap regions)
—Global operators (shift, global sum)
—Rebalance
—Redistribute(Distlib2)

• Must do what compilers need to achieve performance
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Advantages
• New distributions can be added as needed

—Open source community
—Current distributions are special cases

– Although we need to keep the built-in distributions (more later)
—Simplifies view of interesting new technologies

– Out-of-core data distribution

• Expert user retains more control over performance
—Manages own distribution
—Provides communication primitives as needed

– shift, global sum
—Can include and manage ghost regions
—Can design adaptivity strategy
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Problems
• Performance

—Current compilers get mileage from knowing the details of the
distribution
– For example, in determining which computations require

communication
– Rice dHPF uses integer set framework to reason about regions

requiring communication
—What do we do if the distribution is encapsulated in a collection of

methods?
– Owner(A(I,J)) is a case in point

• Reliability
—What if designer constructs incorrect distributions?

• Solution Strategy:
—Extensive preliminary analysis of distribution library



Detour: Support for High-Level
Domain-Specific Programming

Telescoping Languages: Generating
Problem-Solving Sytems from Annotate

Libraries
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Programming Productivity
• Challenges

—programming is hard
—professional programmers are in short supply
—high performance will continue to be important
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Programming Productivity
• Challenges

—programming is hard
—professional programmers are in short supply
—high performance will continue to be important

• One Strategy: Make the End User a Programmer
—professional programmers develop components
—users integrate components using:

– problem-solving environments (PSEs)
– scripting languages (possibly graphical)

 examples: Visual Basic, Tcl/Tk, AVS, Khoros

• Compilation for High Performance
—translate scripts and components to common intermediate language
—optimize the resulting program using interprocedural methods
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Script-Based Programming
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Telescoping Languages: Advantages

• Compile times can be reasonable
—More compilation time can be spent on libraries

– Amortized over many uses
—Script compilations can be fast

– Components reused from scripts may be included in libraries
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Telescoping Languages: Advantages

• Compile times can be reasonable
—More compilation time can be spent on libraries

– Amortized over many uses
—Script compilations can be fast

– Components reused from scripts may be included in libraries

• High-level optimizations can be included
—Based on specifications of the library designer

– Properties often cannot be determined by compilers
– Properties may be hidden after low-level code generation

• User retains substantive control over language performance
—Mature code can be built into a library and incorporated into

language
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Applications

• Matlab Compiler
—Automatically generated from LAPACK or ScaLAPACK

– With help via annotations from the designer

• Automatic Generation of POOMA
—Data structure library implemented via template expansion in C++
—Long compile times, missed optimizations

• Generator for Grid Computations
—GrADS: automatic generation of NetSolve

• Flexible Data Distributions
—Failing of HPF: inflexible distributions
—Data distribution == collection of interfaces that meet specs
—Compiler applies standard transformations
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Application to HPF
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Application to HPF
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Distribute (Hilbert2D): A,B
Do i = 1,100

A(i) = B(i) + C
Enddo

A.putBlock(1,100, 
B.getBlock(1,100) + C)
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Leverage from Telescoping Languages

• High-level Specifications
—Provide information about when certain optimizations can be done

– Access vectorization
—Suggest specialized substitutions unique to distribution

• Providing Knowledge to the Compiler
—If the owner(A(I,J)) functionality is particularly simple, substitute

the code inline
– Automatic inversion possible

—Determination whether distribution is known at compile time
– If it is, inspector can be embedded in compilation phase

—Compiler can specialize run-time distributions to program context
– partial evaluation of distribution
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Example
• Unknown owner

DO I = 1, N

DO J= 1,N;

A(I,J) = A(I+1,J) + C

ENDDO

ENDDO

• Becomes
DO (I,J) in OwnedBy(pI,pJ)

IF (Owner(A(I+1,J))≠(pI,pJ)) THEN
Get(A(I+1,J)) into X

A(I,J) = X + C ! All local

ELSE

A(I,J) = A(I+1,J) + C

ENDIF

ENDDO

Need inverse!
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Example Continued
• Recursive bisection load balance:

—Processor (pI,pJ) owns
– Iterations of I loop such that LowI(pI) ≤ I ≤ HiI(pI)
– Iterations of J loop such that LowJ(pI,pJ) ≤ J ≤ HiJ(pI,pJ)

VPUT(A(LoI(pI), LoJ(pI,pJ):HiJ(pI,pJ)) to (pI-1,pJ)

DO I = LoI(pI),HiI(pI)-1

DO J = LoJ(pI,pJ), HiJ(pI,pJ)

A(I,J) = A(I+1,J) + C

ENDDO

ENDDO

VGET(A(HiI(pI)+1,LoJ(pI,pJ):HiJ(pI,pJ)) into arrayX

DO J = LoJ(pI,pJ), HiJ(pI,pJ)

 A(I,J) = arrayX(J) + C

ENDDO



Center for High Performance Software

Summary
• Mixed Reviews on HPF

—Many strengths: separation of distribution from data
—Many weaknesses

– Performance and usability

• Rethinking HPF
—Need to focus on issues that will help users solve problems

– Need simplicity, generality and control

• Idea: Extensible Distributions
—Distribution is a class defining mapping of data to storage
—Any class providing minimal set of methods may be used

• Compilation Technologies
—Existing HPF compilers must be rewritten
—Telescoping languages strategy can buy back performance

http://www.cs.rice.edu/~ken/Presentations/HPF2000Keynote.pdf


