
HPF Features for Locality Control on
CC-NUMA Architectures

Barbara Chapman
University of Houston

Contents

• CC-NUMA Architectures

• Language Extensions for CC-NUMA Systems

• Programming for Scalable Performance

• Summary

CC-NUMA Platforms

• Emulate true shared memory systems
– globally addressable memory
– hardware support for cache consistency

• Increasingly built and deployed
– HP, SGI, Compaq, Sun…

• Increasing size of individual systems
– 1024 processor SGI Origin 3000 soon to

be delivered

New AlphaServer GS System

• CC-NUMA machine built from 4-processor
building blocks (“quads”) interconnected with
a fast switch that delivers 1.6GB/s in +
1.6GB/s out = 3.2GB/s total per quad, with
remote latency less than 3:1 even under
heavy load!

• Each quad is a UMA SMP, with 4*1.6 =
6.4GB/s total bandwidth between processors
and memory

• Processors: Up to 32 Alpha EV67@ 729Mhz
(initially)

• Dual floating point pipelines; quad integer pipelines

 CC-NUMA Programming Issues

• Memory hierarchy
– cache, local and remote

• Performance impact
– keep data in cache
– penalties for true and false sharing of

cache lines
– network contention

CC-NUMA Programming

• A variety of programming models used
– MPI
– OpenMP
– HPF
– MPI and OpenMP, HPF and OpenMP

• But shared memory is what they
emulate

OpenMP

• OpenMP de facto standard for shared
memory work distribution
– available for Fortran, C and C++

• OpenMP application development
– easy, fast, incremental
– code maintenance benefits
– … but optimization is hard

Fast OpenMP Parallelization

– QMC on SGI Origin 2000, 40 195MHz R10000 processors
• Access to 8 processors

L.Smith@epcc.ed.ac.uk
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Number of Processes / Threads

S
pe

ed
-u

p Ideal

MPI

OpenMP

OpenMP on CC-NUMAs

• No features to support CC-NUMA
• Vendors acknowledge need for data

locality control at node level
– first touch allocation policy
– automatic page migration
– page-based mappings
– HPF-style element mappings
– association of work with location of data

 SGI OpenMP CC-NUMA
Extensions

• Allocate cache pages to memory on nodes
– DISTRIBUTE, ONTO, DYNAMIC, page_place
– inaccurate, but preserves illusion of true shared

memory

• Allocate data to processors in HPF style
– DISTRIBUTE_RESHAPE, ONTO, query intrinsics
– accurate, but destroys illusion of shared memory
– translates references to (processor, offset)

• Assign loop iterations to thread
– AFFINITY (like ON HOME), NEST

User-Directed Page Migration
• Two new directives:

!dec$ omp migrate_next_touch(<variable-
list>)
!dec$ omp place_next_touch (<variable-
list>)

• migrate_next_touch marks pages containing
any part of a variable in the list for migration
to the quad of the thread that next touches
the page.

• place_next_touch marks pages containing
only data belonging to a variable in the list
for migration to the quad of the thread that
next touches the page; the contents of the
page(s) are discarded.

Extensions to Compaq Fortran
OpenMP Language

• Add data, computation layout directives to specify:
– On which quad data is placed
– On which quad a loop iteration is placed

• Add “NUMA” directive to control computation
placement:

!dec$ omp numa

!$omp parallel do

• The NUMA directive modifies the following
PARALLEL DO to schedule iterations based on
layout and usage of data in loop

LU Example With Data Layout

integer, parameter :: n=1024
real(kind=8) :: a(n,n)
!dec$ distribute (*,cyclic) :: a(n,n)
. . .

do k=1,n-1
 do m = k+1, n

 a(m,k) = a(m,k) / a(k,k)
 end do

 !dec$ omp numa
 !$omp parallel do private(i)
 do j = k+1, n

 do i = k+1, n
 a(i,j) = a(i,j) - a(i,k) *a(k,j)
 end do
 end do

 end do

Preliminary Results with LU
LU: Spe e dup Re lative to Stan dard Op e nM P 4-CPU t im e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4 8 16 32

Num b e r o f CPUs

S
p

e
e

d
u

Standard OpenMP

Data Lay out, page granular ity

Data Lay out, element granular ity

Migrate 1

Migrate 2

Data Layout Directive Summary
• Data and computation placement directives:

– DISTRIBUTE, REDISTRIBUTE
– ALIGN
– ON
– TEMPLATE
– MEMORIES*

– [NO]SEQUENCE
• Can do complex layouts, including blocked

[by chunks], round-robin [by chunks], partial
replication, full replication
Directives taken from High Performance Fortran, which carefully figured out
how to make them work with Fortran 90/95 features

*MEMORIES equivalent to HPF’s PROCESSORS directive

OpenMP Jacobi on Origin

!$OMP Parallel Shared (b, a, sum)
 ………..
!$OMP DO
do j = 1, n
 do i = 1, n
 a (i,j) = (b(i-1,j) + b(i+1,j) + b(i,j-1) + b(i,j+1)) * 0.25
 enddo
enddo

• First touch data allocation distributes second
dimension of a, b in BLOCK fashion

8Kb

2Mb

8Kb

2Mb

Node A Node B

8Kb

p1 p4p3p2

Speedups for Jacobi on SGI Origin2000(1024x1024)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

No. of OpenMP Threads

S
pe

ed
up

No Distribution

OpenMP Jacobi on Origin

!$SGI DISTRIBUTE_RESHAPE b(*,block), a(*,block)
!$OMP PARALLEL SHARED (b, a, sum)
 ………..
!$OMP DO
do j = 2, n
 do i = 1, n
 a (i,j) = b(i-1,j) + …
 enddo
enddo

• Data is mapped explicitly to processors
• This is the same mapping as first touch

Speedups for Jacobi on SGI Origin2000(1024x1024)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

No. of OpenMP Threads

S
pe

e
du

p

No Distribution

!$SGI Distribute(*,Block)

!$SGI Distribute_Reshape(*,Block)

Improving Scalability

• Minimize number of variables accessed
by more than 1 processor

• Separate frequently updated variables
from others

• Aggregate related frequently updated
variables

OpenMP SPMD Parallelization

• Distribute arrays among threads,
privatize

• Create buffers to store data shared
between two or more threads

• Copy data to and from buffers as
needed

• Insert necessary synchronization

Loop-level vs SPMD parallelism on 4-wa y Compaq ES40

0

0 .5

1

1 .5

2

2 .5

3

1 2 3 4 5

#CP US

S
pe

ed
up

D irec t ive

E s tim a ted P o ten t ia l S peedup

S P M D

SPMD Programming Style

• NLOM, NCOM Ocean Models
– several parallel versions developed at Naval

Research Lab

• Developed HALO benchmark to compare
OpenMP and MPI on range of architectures
– OpenMP significantly outperformed MPI

• OpenMP code is now preferred version
– scales close to linearly up to 112 nodes on Origin

2000
– MPI to 28 nodes

OpenMP Jacobi on Origin

!$OMP Parallel Shared (sum, bufleft, bufright) &
!$OMP PRIVATE (a, b, threadnum, mylb1, myub1, ..)

do i = 1, n
 bufleft (i, threadnum) = b (i, 1)
end do

do j =mylb1, myub1
 do i =mylb2, myub2
 a (i,j) = b(i-1,j) + …

• Private arrays (include shadow region)
• Buffers used to share data

00 11 22 33

Private Array

Shared Buffers

Shadow Rows

Data Decomposition for Private Version

Speedups for Jacobi on SGI Origin2000(1024x1024)

0

4

8

12

16

20

24

28

32

36

40

44

0 4 8 12 16 20 24 28 32

No. of OpenMP Threads

S
pe

ed
up

Hand Translated Distribute(*,Block)

OpenMP Jacobi on Origin

!$OMP Parallel Shared (sum, bufleft, bufright) &
!$OMP PRIVATE (a, b, threadnum, mylb1, myub1, ..)

do i = 1, n
 bufleft (i, threadnum) = b (i, 1)
end do

do j =mylb1, myub1
 do i =mylb2, myub2
 a (i,j) = b(i-1,j) + …

• It is generally hard work to write this code

OpenMP Jacobi on Origin

!$NMP DISTRIBUTE A (*,BLOCK), B(*, BLOCK)
!$NMP SHADOW B (0, 1:1)
!$OMP Parallel Shared (a, b, sum)
.
do j = 1, n
 do i = 1, n
 a (i,j) = b(i-1,j) + …
 enddo
enddo

• Data is distributed, work mapped accordingly
• Compiler generates private arrays, buffers

and code to copy data to and from buffers

 Lattice-Boltzmann Equation
(LBE)

• LBE code supplied by L.S. Luo, NASA
Langley

• Finite difference equations
• Update is 2-d Jacobi using data from 8

neighboring points
• But data associated with neighboring

points is also updated

Discretization of velocities for the 9-bit LBM

Lattice-Boltzmann Equation

!$SGI DISTRIBUTE F (*, *, BLOCK), FOLD(*, *, BLOCK)
!$OMP Parallel Shared (f, fold)
!$OMP DO
do j = 1, n
 do i = 1, n
 f(i, 0, j) = fold (i, 0, j) + …
 f(i+1, 1, j) = fold (i, 1, j) + …
 f(i, 2, j+1) = fold (i, 2, j) + …
 f(i, 4, j-1) = fold (i, 4, j) + …

 enddo
enddo

• Multiple processors write cache lines of f
• Test size small: decreasing accuracy of distribution

Speedups for LB E on Ori g in2000(128x128)

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

0 5 10 15 20 25 30 35

No. Of Ope nM P Threa ds

Sp
ee

du
p

No D is tribution

Speedups for LBE on Origin2000(128x128)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

No. Of OpenM PThre a ds

Sp
ee

du
p

No Dis tribution

!$S GI Dis tribute (*,bloc k)

!$S GI Dis tribute_Res hape(*,bloc k)

Lattice-Boltzmann Equation

!$NMP DISTRIBUTE F (*, *, BLOCK), FOLD(*, *, BLOCK)
!$NMP SHADOW F (0, 0, 1:1)
!$OMP Parallel Shared (f, fold)
.
!$OMP DO
do j = 1, n
 do i = 1, n
 f(i, 0, j) = fold (i, 0, j) + …
 f(i+1, 1, j) = fold (i, 1, j) + …
 f(i, 2, j+1) = fold (i, 2, j) + …
 f(i, 4, j-1) = fold (i, 4, j) + …

 enddo
enddo

Speedups for LB E on Ori g in2000(128x128)

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

No. O f O p e nM P Thre a ds

Sp
ee

du
p

Hand Trans lated Dis tribute(*,block)

SPMD Style on Software DSM

• Tested on SP2 with TreadMarks also
• Slides show Jacobi example
• Shared version: arrays declared as

shared, system handles references
• Private version: private copies of local

part of decomposed array, buffers hold
shared parts of array

Speedups: Shared & Private Versions

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8 16 32

Number of Processors

S
pe

ed
up Speedup (Shared)

Speedup (Private)

Per-Iteration Cost

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

1 2 4 8 16 32

Number of Processors

T
im

e
(s

ec
)

Per iteration cost.

Per iteration cost without
Barrier.

Total Barrier cost

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

1 2 4 8 16 32

Number of Processors

T
im

e
(s

ec
)

Per iteration cost

Per iteration Cost without
Barrier.

Total Barrier Cost

Shared Private

Data/Work Locality Features

• Vendors provide user-level directives
• But features differ considerably

– markedly different sets of extensions
– translation, rules at subroutine boundaries…

• Do not necessarily provide scalable
performance

• Do not give much support for irregular
computations
– GEN_BLOCK might be modest improvement

HPF for Locality (and more)

• SPMD programming style provides
scalability on CC-NUMA systems

• Not easy for user to create SPMD code
• Could be generated via HPF-like

translation

Issues in Combining Features

• Incremental development
• Storage and sequence association
• Which data distribution features are

“enough”?
• Mappings to nodes or processors?
• Simplify procedure interface?

Summary

• OpenMP popular on SMPs, ccNUMAs
• Lacks facilities for expressing data

locality, alignment of thread and data
• HPF features for data/work locality can

be used with OpenMP
• Translation scheme generates SPMD

OpenMP code with high performance

