HPF Features for Locality Control on
CC-NUMA Architectures

Barbara Chapman
University of Houston

“ Contents

e CC-NUMA Architectures

e Language Extensions for CC-NUMA Systems

* Programming for Scalable Performance

e Summary

m CC-NUMA Platforms

 Emulate true shared memory systems
— globally addressable memory
— hardware support for cache consistency

 Increasingly built and deployed
— HP, SGI, Compag, Sun...
* Increasing size of individual systems

— 1024 processor SGI Origin 3000 soon to
be delivered

a New AlphaServer GS System

 CC-NUMA machine built from 4-processor
building blocks (“guads™) interconnected with
a fast switch that delivers 1.6GB/s In +
1.6GB/s out = 3.2GB/s total per quad, with
remote latency less than 3:1 even under
heavy load!

 Each quad is a UMA SMP, with 4*1.6 =

6.4GB/s total bandwidth between processors
and memory

* Processors: Up to 32 Alpha EV67@ 729Mhz

(initially)
COMPAQ « Dual floating point pipelines; quad integer pipelines

Better answers

“ CC-NUMA Programming Issues

« Memory hierarchy
— cache, local and remote

 Performance impact
— keep data in cache

— penalties for true and false sharing of
cache lines

— network contention

“ CC-NUMA Programming

« A variety of programming models used
— MPI
— OpenMP
— HPF
— MPI and OpenMP, HPF and OpenMP

e But shared memory is what they
emulate

m OpenMP

 OpenMP de facto standard for shared
memory work distribution

— avallable for Fortran, C and C++

 OpenMP application development
— easy, fast, incremental
— code maintenance benefits
— ... but optimization is hard

Fast OpenMP Parallelization

— QMC on SGI Origin 2000, 40 195MHz R10000 processors
« Access to 8 processors

(11

r of Processes/ Threads L.Smith@epCC-Ed'aC'Uk

m OpenMP on CC-NUMAS

* No features to support CC-NUMA

* Vendors acknowledge need for data
locality control at node level

— first touch allocation policy

— automatic page migration

— page-based mappings

— HPF-style element mappings

— association of work with location of data

m SGI OpenMP CC-NUMA
Extensions

» Allocate cache pages to memory on nodes
— DISTRIBUTE, ONTO, DYNAMIC, page place

— Inaccurate, but preserves illusion of true shared
memory

« Allocate data to processors in HPF style
— DISTRIBUTE_RESHAPE, ONTO, query intrinsics
— accurate, but destroys illusion of shared memory
— translates references to (processor, offset)

« Assign loop iterations to thread
— AFFINITY (like ON HOME), NEST

User-Directed Page Migration

 Two new directives:
ldec$ omp migrate next_touch(<variable-
list>)
ldec$ omp place_next_touch (<variable-
list>)

e migrate next touch marks pages containing
any part of a variable in the list for migration
to the quad of the thread that next touches
the page.

e place next touch marks pages containing
only data belonging to a variable in the list
for migration to the quad of the thread that

compaa next touches the page; the contents of the

seeranswers [0AQE(S) are discarded.

Extensions to Compaq Fortran
OpenMP Language

e Add data, computation layout directives to specify:
—On which quad data is placed
—On which quad a loop iteration is placed

e Add “NUMA?” directive to control computation
placement:
ldec$ omp numa
ISomp parallel do
« The NUMA directive modifies the following

PARALLEL DO to schedule iterations based on
layout and usage of data in loop

COMPAQ

Better answers

U Example With Data Layout

integer, parameter - n=1024
real(kind=8) :-a(n,n)
Idec$ distribute (*,cyclic) :: a(n,n)

do k=1,n-1
dom=k+1,n
a(m,k) = a(m,k) / a(k,k)
end do

ldec$ omp numa
ISomp parallel do private(i)
doj=k+l,n
doi=k+1,n
a(i,)) = a(i) - a(i,k) *a(k,})
end do
end do
end do

COMPAQ

Better answers

Preliminary Results with LU

LU: Speedup Relative to Standard OpenMP 4-CPU time

7.0

6.0 /
5.0 /
—@— Standard OpenMP

4.0
—e— Data Layout, page granularity
5 —@i— Data Layout, element granularity
/ Migrate 1
3.0

. / Migrate 2
2.0
4 —

1.0

Speedu

0.0 ‘ ‘ :
4 8 16 32

camma Number of CPUs

Better answers

;gata Layout Directive Summary
e Data and computation placement directives:
—~DISTRIBUTE, REDISTRIBUTE
—ALIGN
—~ON
—~TEMPLATE
—~MEMORIES®
—[NOJSEQUENCE
e Can do complex layouts, including blocked

[by chunks], round-robin [by chunks], partial
replication, full replication

Directives taken from High Performance Fortran, which carefully figured out
how to make them work with Fortran 90/95 features

*MEMORIES equivalent to HPF's PROCESSORS directive

COMPAQ

Better answers

“ OpenMP Jacobi on Origin

ISOMP Parallel Shared (b, a, sum)
ISOMP DO
doj=1,n
doi=1,n
a(i,j) = (b(i-1,j) + b(i+1,j)) + b(i,j-1) + b(i,j+1)) * 0.25
enddo
enddo

e First touch data allocation distributes second
dimension of a, b in BLOCK fashion

Speedups for Jacobi on SGI Origin2000(1024x1024)

Speedup

—&— No Distribution

10 15 20 25 30

0 5
No. of OpenMP Threads

“ OpenMP Jacobi on Origin

1I$SGI DISTRIBUTE_RESHAPE b(*,block), a(*,block)
ISOMP PARALLEL SHARED (b, a, sum)
ISOMP DO
doj=2,n
doi=1,n
a(i,j)=b(-1,) + ...
enddo
enddo

« Data is mapped explicitly to processors
e This Is the same mapping as first touch

Speedups for Jacobi on SGI Origin2000(1024x1024)

Speedup

—&— No Distribution
—&—$SGI Distribute(*,Block)

15 20 25

5 10
No. of OpenMP Threads

—a— !$SGI Distribute_Reshape(*,Block)

30

m Improving Scalability

 Minimize number of variables accessed
by more than 1 processor

o Separate frequently updated variables
from others

« Aggregate related frequently updated
variables

m OpenMP SPMD Parallelization

 Distribute arrays among threads,
privatize

 Create buffers to store data shared
between two or more threads

 Copy data to and from buffers as
needed

* Insert necessary synchronization

Loop-levelvs SPMD parallelism on 4-wa y Compag ES40

—e—Directive
—=—Estimated Potential Speedup
SPMD

m SPMD Programming Style

e NLOM, NCOM Ocean Models

— several parallel versions developed at Naval
Research Lab

 Developed HALO benchmark to compare
OpenMP and MPI on range of architectures
— OpenMP significantly outperformed MPI

e OpenMP code is now preferred version

— scales close to linearly up to 112 nodes on Origin
2000

— MPI to 28 nodes

reol

(N) WiBua| ojey
FALS ase Bl +9 Ze 9l 8 ¥

—= duedO-000013
—e WIWHS-NIDIHO
— |dN-0000L3
—= |dIN-NIDIHO

SIAONVHIX3 O'IWH 3d4-81 1534

S0-21

L L0000

OO0

{spuooas) aw ||em

OpenMP Jacobi on Origin

ISOMP Parallel Shared (sum, bufleft, bufright) &
ISOMP PRIVATE (a, b, threadnum, mylb1, myub1, ..)
doi=1,n
bufleft (1, threadnum) =b (i, 1)
end do
do j =mylbl, myubl
do i =mylb2, myub?2
a(i))=Db(i-1,) + ...

* Private arrays (include shadow region)
e Buffers used to share data

Data Decomposition for Private Version

| | I I | |
0|><|1 | |2|)<|3
v \/ \4 A4

[1 Private Array
[shadow Rows

I Shared Buffers

Speedups for Jacobi on SGI Origin2000(1024x1024)

Speedup

—@— Hand Translated Distribute(*,Block)

32

12 16 20 24 28

No. of OpenMP Threads

OpenMP Jacobi on Origin

ISOMP Parallel Shared (sum, bufleft, bufright) &
ISOMP PRIVATE (a, b, threadnum, mylb1, myub1, ..)
doi=1,n
bufleft (1, threadnum) =b (i, 1)
end do
do j =mylbl, myubl
do i =mylb2, myub?2
a(i))=Db(i-1,) + ...

It Is generally hard work to write this code

m OpenMP Jacobi on Origin

ISNMP DISTRIBUTE A (*,BLOCK), B(*, BLOCK)
ISNMP SHADOW B (0, 1:1)
ISOMP Parallel Shared (a, b, sum)

a(i))=Db(i-1,) + ...
enddo
enddo

e Data Is distributed, work mapped accordingly

« Compiler generates private arrays, buffers
and code to copy data to and from buffers

m Lattice-Boltzmann Equation
(LBE)

 LBE code supplied by L.S. Luo, NASA
_angley

* Finite difference equations

« Update Is 2-d Jacobi using data from 8
neighboring points

e But data associated with neighboring
points is also updated

Discretization of velocities for the 9-bit LBM

Lattice-Boltzmann Equation

I$SGI DISTRIBUTE F (*, *, BLOCK), FOLD(*, *, BLOCK)
ISOMP Parallel Shared (f, fold)
ISOMP DO
doj=1,n
doi=1,n
f(i,0,j) = fold (i, 0,]) + ...
f(i+1, 1, j) = fold (i, 1,j) + ...
f(i, 2, j+1) = fold (i, 2,) + ...
f(i, 4, j-1) = fold (i, 4,j) + ...
enddo
enddo
e Multiple processors write cache lines of f

e Test size small: decreasing accuracy of distribution

Speedup

Speedups for LBE on Ori gin2000(128x128)

—e—No Distribution

10 15 20 25 30

No. Of OpenMP Threads

35

Speedups for LBE on Origin2000(128x128)

—o—No Distribution
—m—!$SGI Distribute (*,block)
—a—$SGI Distribute_Reshape(*,block)

0 5 10 15 20 25 30
No. Of OpenMPThreads

“ Lattice-Boltzmann Equation

ISNMP DISTRIBUTE F (*, *, BLOCK), FOLD(*, *, BLOCK)
ISNMP SHADOW F (0,0, 1:1)
ISOMP Parallel Shared (f, fold)
ISOMP DO
doj=1,n
doi=1,n
f(i,0,j) = fold (i,0,)) + ...
fi+1, 1,) =fold (i, 1,)) + ...
f(i, 2, j+1) =fold (i, 2,)) + ...
f(i,4, j-1) = fold (1,4, + ...
enddo
enddo

Speedups for LBE on Ori gin2000(128x128)

Speedup

——Hand Translated Distribute(*,block)

0 5 10 15 20 25 30
No. Of OpenMPThreads

m SPMD Style on Software DSM

e Tested on SP2 with TreadMarks also
e Slides show Jacobi example

« Shared version: arrays declared as
shared, system handles references

* Private version: private copies of local
part of decomposed array, buffers hold
shared parts of array

Speedups: Shared & Private Versions

—&— Speedup (Shared)
—— Speedup (Private)

1 2 4 8 16 32

Number of Processors

Per-lteration Cost

0.140
0.120 -
01007 | | B Per iteration cost.
2 0080 |] i
e B Per iteration cost wiithout
g Barrier.
= 0060 O Total Barier cost
0.040 3
0.020 1 3
0.000 -]

Nunrber of Processors

Time (sec)

§

0.140

0.120 1

0.100

§

0.040

0.020 1

0.000-

O Per jteration cost

B P jteration Cost without
Barrier.

OTotal Barrier Cost

Shared

Private

m Data/Work Locality Features

* Vendors provide user-level directives

« But features differ considerably
— markedly different sets of extensions
— translation, rules at subroutine boundaries...

* Do not necessarily provide scalable
performance

* Do not give much support for irregular
computations

— GEN_BLOCK might be modest improvement

m HPF for Locality (and more)

« SPMD programming style provides
scalability on CC-NUMA systems

* Not easy for user to create SPMD code

e Could be generated via HPF-like
translation

m Issues in Combining Features

* Incremental development
e Storage and sequence association

 \WWhich data distribution features are
“enough”?

 Mappings to nodes or processors?
o Simplify procedure interface?

m Summary

 OpenMP popular on SMPs, ccNUMASs

» Lacks facilities for expressing data
ocality, alignment of thread and data

 HPF features for data/work locality can
e used with OpenMP

* Translation scheme generates SPMD
OpenMP code with high performance

