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m CC-NUMA Platforms

 Emulate true shared memory systems
— globally addressable memory
— hardware support for cache consistency

 Increasingly built and deployed
— HP, SGI, Compag, Sun...
* Increasing size of individual systems

— 1024 processor SGI Origin 3000 soon to
be delivered




a New AlphaServer GS System

 CC-NUMA machine built from 4-processor
building blocks (“guads™) interconnected with
a fast switch that delivers 1.6GB/s In +
1.6GB/s out = 3.2GB/s total per quad, with
remote latency less than 3:1 even under
heavy load!

 Each quad is a UMA SMP, with 4*1.6 =

6.4GB/s total bandwidth between processors
and memory

* Processors: Up to 32 Alpha EV67@ 729Mhz

(initially)
COMPAQ « Dual floating point pipelines; quad integer pipelines

Better answers




“ CC-NUMA Programming Issues

« Memory hierarchy
— cache, local and remote

 Performance impact
— keep data in cache

— penalties for true and false sharing of
cache lines

— network contention




“ CC-NUMA Programming

« A variety of programming models used
— MPI
— OpenMP
— HPF
— MPI and OpenMP, HPF and OpenMP

e But shared memory is what they
emulate




m OpenMP

 OpenMP de facto standard for shared
memory work distribution

— avallable for Fortran, C and C++

 OpenMP application development
— easy, fast, incremental
— code maintenance benefits
— ... but optimization is hard




Fast OpenMP Parallelization

— QMC on SGI Origin 2000, 40 195MHz R10000 processors
« Access to 8 processors
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m OpenMP on CC-NUMAS

* No features to support CC-NUMA

* Vendors acknowledge need for data
locality control at node level

— first touch allocation policy

— automatic page migration

— page-based mappings

— HPF-style element mappings

— association of work with location of data




m SGI OpenMP CC-NUMA
Extensions

» Allocate cache pages to memory on nodes
— DISTRIBUTE, ONTO, DYNAMIC, page place

— Inaccurate, but preserves illusion of true shared
memory

« Allocate data to processors in HPF style
— DISTRIBUTE_RESHAPE, ONTO, query intrinsics
— accurate, but destroys illusion of shared memory
— translates references to (processor, offset)

« Assign loop iterations to thread
— AFFINITY (like ON HOME), NEST




User-Directed Page Migration

 Two new directives:
ldec$ omp migrate next_touch(<variable-
list>)
ldec$ omp place_next_touch (<variable-
list>)

e migrate next touch marks pages containing
any part of a variable in the list for migration
to the quad of the thread that next touches
the page.

e place next touch marks pages containing
only data belonging to a variable in the list
for migration to the quad of the thread that

compaa next touches the page; the contents of the

seeranswers [0AQE(S) are discarded.




Extensions to Compaq Fortran
OpenMP Language

e Add data, computation layout directives to specify:
—On which quad data is placed
—On which quad a loop iteration is placed

e Add “NUMA?” directive to control computation
placement:
ldec$ omp numa
ISomp parallel do
« The NUMA directive modifies the following

PARALLEL DO to schedule iterations based on
layout and usage of data in loop

COMPAQ

Better answers




U Example With Data Layout

integer, parameter - n=1024
real(kind=8) :-a(n,n)
Idec$ distribute (*,cyclic) :: a(n,n)

do k=1,n-1
dom=k+1,n
a(m,k) = a(m,k) / a(k,k)
end do

ldec$ omp numa
ISomp parallel do private(i)
doj=k+l,n
doi=k+1,n
a(i,)) = a(i) - a(i,k) *a(k,})
end do
end do
end do

COMPAQ

Better answers




Preliminary Results with LU

LU: Speedup Relative to Standard OpenMP 4-CPU time
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;gata Layout Directive Summary
e Data and computation placement directives:
—~DISTRIBUTE, REDISTRIBUTE
—ALIGN
—~ON
—~TEMPLATE
—~MEMORIES®
—[NOJSEQUENCE
e Can do complex layouts, including blocked

[by chunks], round-robin [by chunks], partial
replication, full replication

Directives taken from High Performance Fortran, which carefully figured out
how to make them work with Fortran 90/95 features

*MEMORIES equivalent to HPF's PROCESSORS directive

COMPAQ

Better answers




“ OpenMP Jacobi on Origin

ISOMP Parallel Shared (b, a, sum)
ISOMP DO
doj=1,n
doi=1,n
a(i,j) = (b(i-1,j) + b(i+1,j)) + b(i,j-1) + b(i,j+1) ) * 0.25
enddo
enddo

e First touch data allocation distributes second
dimension of a, b in BLOCK fashion







Speedups for Jacobi on SGI Origin2000(1024x1024)
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“ OpenMP Jacobi on Origin

1I$SGI DISTRIBUTE_RESHAPE b(*,block), a(*,block)
ISOMP PARALLEL SHARED (b, a, sum)
ISOMP DO
doj=2,n
doi=1,n
a(i,j)=b(-1,) + ...
enddo
enddo

« Data is mapped explicitly to processors
e This Is the same mapping as first touch




Speedups for Jacobi on SGI Origin2000(1024x1024)
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m Improving Scalability

 Minimize number of variables accessed
by more than 1 processor

o Separate frequently updated variables
from others

« Aggregate related frequently updated
variables




m OpenMP SPMD Parallelization

 Distribute arrays among threads,
privatize

 Create buffers to store data shared
between two or more threads

 Copy data to and from buffers as
needed

* Insert necessary synchronization




Loop-levelvs SPMD parallelism on 4-wa y Compag ES40
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m SPMD Programming Style

e NLOM, NCOM Ocean Models

— several parallel versions developed at Naval
Research Lab

 Developed HALO benchmark to compare
OpenMP and MPI on range of architectures
— OpenMP significantly outperformed MPI

e OpenMP code is now preferred version

— scales close to linearly up to 112 nodes on Origin
2000

— MPI to 28 nodes
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OpenMP Jacobi on Origin

ISOMP Parallel Shared (sum, bufleft, bufright ) &
ISOMP PRIVATE ( a, b, threadnum, mylb1, myub1, ..)
doi=1,n
bufleft (1, threadnum ) =b (i, 1)
end do
do j =mylbl, myubl
do i =mylb2, myub?2
a(i))=Db(i-1,) + ...

* Private arrays (include shadow region)
e Buffers used to share data




Data Decomposition for Private Version
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Speedups for Jacobi on SGI Origin2000(1024x1024)
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OpenMP Jacobi on Origin

ISOMP Parallel Shared (sum, bufleft, bufright ) &
ISOMP PRIVATE ( a, b, threadnum, mylb1, myub1, ..)
doi=1,n
bufleft (1, threadnum ) =b (i, 1)
end do
do j =mylbl, myubl
do i =mylb2, myub?2
a(i))=Db(i-1,) + ...

It Is generally hard work to write this code




m OpenMP Jacobi on Origin

ISNMP DISTRIBUTE A (*,BLOCK), B(*, BLOCK)
ISNMP SHADOW B (0, 1:1)
ISOMP Parallel Shared ( a, b, sum)

a(i))=Db(i-1,) + ...
enddo
enddo

e Data Is distributed, work mapped accordingly

« Compiler generates private arrays, buffers
and code to copy data to and from buffers




m Lattice-Boltzmann Equation
(LBE)

 LBE code supplied by L.S. Luo, NASA
_angley

* Finite difference equations

« Update Is 2-d Jacobi using data from 8
neighboring points

e But data associated with neighboring
points is also updated




Discretization of velocities for the 9-bit LBM




Lattice-Boltzmann Equation

I$SGI DISTRIBUTE F ( *, *, BLOCK), FOLD(*, *, BLOCK)
ISOMP Parallel Shared ( f, fold )
ISOMP DO
doj=1,n
doi=1,n
f(i,0,j) = fold (i, 0,]) + ...
f(i+1, 1, j) = fold (i, 1,j) + ...
f(i, 2, j+1) = fold (i, 2, ) + ...
f(i, 4, j-1) = fold (i, 4,j) + ...
enddo
enddo
e Multiple processors write cache lines of f

e Test size small: decreasing accuracy of distribution




Speedup
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Speedups for LBE on Origin2000(128x128)
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“ Lattice-Boltzmann Equation

ISNMP DISTRIBUTE F ( *, *, BLOCK), FOLD(*, *, BLOCK)
ISNMP SHADOW F (0,0, 1:1)
ISOMP Parallel Shared (f, fold)
ISOMP DO
doj=1,n
doi=1,n
f(i,0,j) = fold (i,0,)) + ...
fi+1, 1, ) =fold (i, 1,)) + ...
f(i, 2, j+1) =fold (i, 2,)) + ...
f(i,4, j-1) = fold (1,4, + ...
enddo
enddo




Speedups for LBE on Ori gin2000(128x128)
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m SPMD Style on Software DSM

e Tested on SP2 with TreadMarks also
e Slides show Jacobi example

« Shared version: arrays declared as
shared, system handles references

* Private version: private copies of local
part of decomposed array, buffers hold
shared parts of array




Speedups: Shared & Private Versions
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m Data/Work Locality Features

* Vendors provide user-level directives

« But features differ considerably
— markedly different sets of extensions
— translation, rules at subroutine boundaries...

* Do not necessarily provide scalable
performance

* Do not give much support for irregular
computations

— GEN_BLOCK might be modest improvement




m HPF for Locality (and more)

« SPMD programming style provides
scalability on CC-NUMA systems

* Not easy for user to create SPMD code

e Could be generated via HPF-like
translation




m Issues in Combining Features

* Incremental development
e Storage and sequence association

 \WWhich data distribution features are
“enough”?

 Mappings to nodes or processors?
o Simplify procedure interface?




m Summary

 OpenMP popular on SMPs, ccNUMASs

» Lacks facilities for expressing data
ocality, alignment of thread and data

 HPF features for data/work locality can
e used with OpenMP

* Translation scheme generates SPMD
OpenMP code with high performance




