Evaluating the Performance of High Performance Fortran Compilers

on a NEC Cenju-4, a Cray T3E, an IBM SP and an SGI Origin 2000

by

Glenn R. Luecke, Ying Li, and Jen-Yao Hsu

Iowa State University

Ames, Iowa 50011-2251, USA

grl@iastate.edu, liying@iastate.edu, tony_hsu@acm.org

1 Introduction

The High Performance Fortran (HPF) [2] standard was introduced in 1994. HPF is a high level parallel language whose goal is to allow one to write efficient parallel programs for distributed memory parallel computers without explicitly specifying the message passing. Other researchers [9, 10] have investigated the performance of HPF compilers for a variety of scientific applications codes. Before an HPF compiler can generate efficient code for scientific applications, it must first be able to generate efficient code for simple kernel operations that are commonly used in scientific computing. In this study, we evaluate the performance of the HPF compilers on a NEC Cenju-4, an IBM SP, a Cray T3E and a SGI Origin 2000 on 8 simple kernel operations by comparing the performance with equivalent MPI [11] implementations. This is a shortened version of this paper. The complete version can be found at [13].
The NEC Cenju-4 is a 64 processor, distributed memory, experimental parallel computer located in Sankt Augustin, Germany. Each node has a 200 MHz VR10000 processor with a peak theoretical performance of 400 Mflop/s. The ADAPTOR HPF compiler was used. ADAPTOR [12] was developed at GMD, Germany by Thomas Brandes and is not a NEC product.

The Cray T3E-600 used is a 512 processor machine located in Eagan, Minnesota. For the tests that involve only communication (i.e. the ping-pong, broadcast, and gather tests), the environment variable SCACHE_D_STREAMS was set to 0 to disable the stream buffers to get maximum communication performance. For the T3E-900 and T3E-1200 machines, it is not necessary to change default environmental variables to achieve maximum performance.

The IBM SP [3] used is a 32 processor machine located at the Maui High Performance Computing center, Hawaii. The peak theoretical performance of each processor is 267 Mflop/s. The tests were run using AIX version 4.3, XLF Fortran compiler version 4.1 with –O3 option and xlhpf90 version 1.1 with –O3 option. IBM now recommends that one use –O3 –qhot when compiling with x.hpf90. Due to lack of machine access, we were not able to rerun our tests with the additional –qhot compiler option. Because of the limited node number, all tests were run with up to only 16 processors on this machine.

The SGI Origin 2000 [5, 7] used is a 128 processor machine located in Eagan, Minnesota. The Origin machine is a 64 node machine and each node has two 300 MHz MIPS R12000 processors sharing a common memory.

All floating-point arithmetic was done using 8 byte reals. The tests were run with 2, 4, 16, 32 processors on all machines except on the IBM SP machine where 32 processors were not available to us.

2 Timing Methodology

Timings were done by first flushing the cache prior to timing the desired operation. Each test was performed 51, a large enough number to analyze the stability of the time trials. [13] describes in detail how the MPI and HPF timings were done.

By observing the time trials obtained in the tests, we found some “spikes” which might be caused by an interruption by the operating system, see [13]. After considerable discussion, the authors decided to report timings excluding these interruptions by the operating system unless these spikes happened too frequently. The data was filtered using the following steps: First the median was computed and all times greater than 1.8 times the median were removed. However, if there would be more than 10% of the data removed by this method, only the 10% of the largest times were removed. Then an average time is computed from the filtered data.

3 Test Descriptions and Performance Results

Throughout this section, p will denote the number of processors used for the test. Each test is written in HPF and in equivalent MPI format. Both versions are then timed as described above. Since there is a large amount of data, only the ratios of the HPF time divided by the MPI time are reported in this section. The actual timings are reported in the appendix in [13]. All tests were performed with three different message sizes to determine if the relative performance would depend on the message size with the smallest message requiring at least 50 clock ticks. For most cases, the HPF/MPI ratios were nearly independent of the size of the message used. For all tests, message sizes were chosen large enough so the elapsed time was sufficiently long to ensure reasonably accurate time measurements. We chose p = 2, 4, 16, and 32 to evaluate scalability.

Writing the HPF or MPI program for a test in a ‘slightly’ different way can sometimes have large effects on performance. All tests used for this study were written without knowledge of their performance on the machines used. However, it may be that some HPF compilers might perform better if our tests were written differently. For example, Thomas Brandes, the author of the ADAPTOR HPF compiler used for the Cenju-4, informed the authors that the dot product test would perform much better if the test had been written calling the Fortran 90 intrinsic DOTPRODUCT instead of using do loops and HPF directives.

At the time when the tests were written, the REDUCTION option for the INDEPENDENT directive (this is part of the HPF 2.0 standard) was not implemented on all machines. Since the authors wanted to run the same tests on all machines, none of the tests use this option. However, the dot product, and the matrix-times vector tests could have been written with this option. It may be that these tests would perform better if they had been rewritten using the REDUCTION option.

Test 1. The Ping-Pong Test

This test is the standard ping-pong test, i.e. the time required to send a message from one processor and then send it back is measured, and then this time is divided by 2, see [13] for details of how the HPF and MPI versions were implemented. Figure 1 shows the ratios of the HPF times divided by the MPI times. The message size n was chosen to be 125000, 250000, and 500000. Notice that for the T3E-600 and Origin 2000, HPF performs well compared with MPI. For the other two machines, MPI is at least 3.8 times faster than HPF.

[image: image1.wmf]0

2

4

6

8

10

n=125000

n=250000

n=500000

Cenju-4

T3E-600

IBM SP

Origin

 Figure 1: HPF/MPI ratios for the ping-pong test

Test 2. The Broadcast Test

This test measures the time required to broadcast a message from one processor the other p-1 processors, see [13] for details on how the HPF and MPI versions were implemented. Figure 2.1 shows the HPF/MPI ratios of the broadcast test when n = 125,000. For all machines, except for the T3E-600, the ratios increase significantly as the number of processors increases. This is likely due to the HPF compilers generating p-1 sends from the root processor instead of calling mpi_bcast. The HPF/MPI ratios for the T3E-600 vary from about 3 to 4 as p varies. The HPF/MPI ratios for the Origin 2000 vary from about 2.0 when p = 2 to about 37.6 when p = 32. For the IBM SP these ratios vary form 10 to 22 and for the Cenju-4 they vary from 5 to 17.

[image: image2.wmf]0

5

10

15

20

25

p=2

p=4

p=16

p=32

Cenju-4

T3E-600

IBM SP

Origin

Figure 2.1: HPF/MPI ratios for the broadcast test with n=125000

Test 3. The Gather Test

This test measures the time required to gather data from all processors to one processor, see [13] for a detailed description for the HPF and MPI implementations. Figure 3.1 shows the HPF/MPI ratios of broadcast test when n = 125,000. HPF performed “reasonably well” on the Cenju-4 and T3E for this test.

[image: image3.wmf]0

1

2

3

4

5

6

p=2

p=4

p=16

p=32

Cenju-4

T3E-600

IBM SP

Origin

Figure 3.1: HPF/MPI ratios for the gather test with n=125000

Test 4. The copy Test

Assume real, one-dimensional arrays A and B are block distributed across p processors. This test measures the time to copy B to A. Observe that no communication between processors is required for this test so one would expect the HPF and MPI versions to give the same performance. [13] gives the HPF and MPI implementation details for this test. Figure 4.1 shows the HPF/MPI ratios of copy test when n*p = 125,000. Notice that all machines except for the T3E-600 performed well on this test. The reason for the poor performance of the T3E-600 is likely because the HPF compiler on the T3E-600 does not take advantage of the stream buffers, since when the stream buffers are turned off, then the MPI results are the same as those for HPF.

[image: image4.wmf]0

0.5

1

1.5

2

2.5

p=2

p=4

p=16

p=32

Cenju-4

T3E-600

IBM SP

Origin

Figure 4.1: HPF/MPI ratios for the copy test with n*p=125000

Test 5. The Swap Test

Assume arrays A, B and C are block distributed across p processors. This test measures the time to “swap” B and C. Notice that this test requires no communication between processors so one would expect the HPF and MPI versions to perform nearly the same, see [13] for implementation details. Figure 5.1 shows the HPF/MPI ratios of swap test when n*p = 125,000. Table A.5.1 – Table A.5.3 in appendix A show all results for the swap tests. HPF performed well compared with MPI for both the Cenju-4 and IBM machines.

[image: image5.wmf]0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p=2

p=4

p=16

p=32

Cenju-4

T3E-600

IBM SP

Origin

Figure 5.1: HPF/MPI ratios for the swap test with n*p=125000

Test 6. The Dot Product Tests

This test measures the time to perform the dot product of two real vectors that are block distributed across p processors. When writing this test in the standard HPF manner (but without using the REDUCTION option available in HPF 2.0 implementations, see [13] for details), the HPF code performed 100’s to 1000’s of time slower than the equivalent MPI code. When changing the test to “temp(i) = X(i)*Y(i)”, the HPF compilers performed well, see [13]. Next the authors simplified the test to the vector sum, “sum = sum + X(i)”, and discovered that this is where the HPF compilers were having difficulty. Table 6.3 gives the performance results for this sum test. Except for IBM SP, the HPF/MPI ratios on all other machines are just as poor as for the dot_product test. IBM SP did better in the sum test, though as the number of processor increases, the HPF/MPI ratios also increase.

HPF/MPI Ratios
 Cenju-4
T3E-600
IBM SP
Origin 2000

 P = 2
600
633
1.82
32564

 P = 4
2078
1983
3.07
106538

P = 16
7941
8211
5.07
338297

P = 32
11735
12649
N/A
524691

Table 6.3: HPF/MPI Ratios for the sum test with n*p=125000

Test 7. The Matrix-Times-Vector Test With Row Blocking

This test measures the time to calculate the matrix-times-vector operation, y = y + Ax, where y is block distributed, the rows of A are block distributed, and x is assumed to be on all p processors, see [13] for details of the HPF and MPI implementations. Notice that no communication is required to execute this program.

Figure 7.1 shows the HPF/MPI ratios of this test when n=256. The HPF compilers perform well for this test since there is no communication necessary. The HPF/MPI ratios on the Cray T3E-600 are significantly larger than other machines because the Fortran 90 compiler on T3E-600 recognizes the above mpi code is a matrix times vector and each processor calls a highly optimized library routine, sgemv. However, the HPF compiler on the T3E-600 does not do this.

[image: image6.wmf]0

1

2

3

4

5

p=2

p=4

p=16

p=32

Cenju-4

T3E-600

IBM SP

Origin

Figure 7.1: HPF/MPI ratios for y=y+Ax with row distribution of A and n*p = 256

Test 8. The Matrix-Times-Vector Test With Column Blocking

This test measures the time to calculate the matrix-times-vector operation, y = y + Ax, where x is block distributed, the columns of A are block distributed, and y is assumed to be on one of the p processors. The HPF and MPI implementations for this test are listed in [13]. Table 8.1 shows the HPF/MPI ratios of this test when n=256. As in test 6, the HPF compiler on the IBM SP performs well on this test and the other HPF compilers do not perform well.

HPF/MPI Ratios
 Cenju-4
T3E-600
IBM SP
Origin 2000

 P = 2
7.70
19.3
1.43
6.78

 P = 4
15.3
11.5
1.64
16.8

P = 16
46.2
11.3
1.98
139

P = 32
43.7
21.1
N/A
254

Table 8.1: HPF/MPI ratios for y=y+Ax with column distribution of A and n*p = 256
4 Conclusions

The purpose of this study was to evaluate the performance of the HPF compilers on a NEC Cenju-4, an IBM SP, a Cray T3E and a SGI Origin 2000 on 8 simple kernel operations by comparing the performance with equivalent MPI implementations. Tests requiring no communication such as, copy, swap, vector multiplication, matrix-times-vector with the rows of the matrix block distributed among the processors, all HPF compilers performed well compared with equivalent MPI implementations, except for the T3E. The reason that the HPF compiler on the T3E did not perform as well as the equivalent MPI was because the HPF compiler did not use the stream buffers and the HPF compiler was not able to pattern match the matrix-times-vector operation.

For the tests with communication, performance results were mixed. All HPF compilers did “reasonably” well for the ping-pong and gather tests, except for IBM’s HPF compiler. All HPF compilers performed poorly on the broadcast, dot product, sum, and the matrix-times-vector with column distribution tests, except for IBM’s HPF compiler performed “okay” on the sum and on the matrix-time-vector with column distribution tests.

For an HPF compiler to be able to perform well on complex scientific applications, it must first perform well on simple kernel operations with reasonable data distributions. None of the HPF compilers used for this study were able to provide good performance for all of the simple tests involving communication. Some of these tests involve the reduction operation and could be rewritten using the REDUCTION option on the HPF INDEPENDENT directive. This may result in better performance.
Acknowledgments

We would like to thank Cray Research Inc. and SGI for allowing us to use their Cray T3E and Origin 2000 located in Eagan, Minnesota. We would also like to thank NEC Europe for allowing us to use their Cenju-4 computer located in Sank Augustin, Germany. We also thank the University of New Mexico for access to their IBM SP located at the Maui High Performance Computing Center. This research, in part conducted at the Maui High Performance Computing Center, was sponsored in part by the Air Force Research Laboratory, Air Force Materiel Command, USAF, under cooperative agreement number F29601-93-2-0001. The views and conclusions contained in this document are those of the author(s) and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory, the U.S. Government, the University of New Mexico, or the Maui High Performance Computing Center.

References

1. Cray Research Web Server. http://www.cray.com.

2. High Performance Fortran language Specification, version 2.0, Rice University, Houston, Texas, October 19, 1996.

3. Maui High performance Computer Center Web server. http://www.mhpcc.edu.

4. NEC Cenju-4 web page http://filou.gmd.de:8002/popcorn/services/Overview.html .

5. Origin Severs. Technical report, Silicon Graphics, April 1997.

6. A. Anderson, J. Brooks, C. Grassl and S. Scott. Performance of the Cray T3E Multiprocessor. Proceeding of SC97, 1997.

7. J. Fier. Performance Tuning Optimization for Origin 2000 and Onyx 2. Silicon Graphics, 1996. http://techpubs.sgi.com.

8. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI, The Complete Reference. Science and Engineering Computation. The MIT Press, 1996.

9. Glenn R. Lucke, Ying Li, Performance Comparison of MPI, PGHPF/CRAFT and HPF Implementations of the Cholesky Factorization on the Cray T3E-600 and IBM SP-2. The Journal of Performance Evaluation and Modeling for Computer Systems, January 1998. http://hpc-journals.ecs.soton.ac.uk/PEMCS.

10. Vikram S. Adve, Rajive Bagrodia, Ewa Deelman, Thomas Phan, Rizos Sakellariou. Compiler-Supported Simulation of Highly Scalable Parallel Applications, http://www.sc99.org/proceedings/papers/deelman.pdf .

11. W. Gropp, E. Lusk, A. Skjellum, Using MPI, The MIT Press, 1994.

12. Thomas Brandes, ADAPTOR, http://www.gmd.de/SCAI/people/brandes.html.

13. A complete version of this paper can be found at http://www.public.iastate.edu/~grl/HPF/HPF_August16_2000.htm.

PAGE

_1021895928

_1022324942

_1021461885

_1021462113

_1021464935

_994612598

