2003 9/25 HPF ワークショップ

非平衡超伝導ダイナミクスシミュレーションの 並列化(HPFとMPIの比較)

町田昌彦 叶野琢磨

日本原子力研究所

計算科学技術推進センター

1、プロジェクト概要	
i)中性子デバイス開発を先導するシミュレーション	
ii)超伝導ナノファブリケーションによる新奇物性	
2、HPFを用いた並列化とチューニング	
3、性能(MPIとの比較)	
4、まとめと結論	

地球シミュレータ共同利用プロジェクト提案:

i)中性子検出デバイス開発を先導するシミュレーション

ii)超伝導ナノファブリケーションによる新奇物性

アドバイザリー:日本原子力学会・大規模シミュレーション専門部会

i) 中性子検出デバイス開発を先導するシミュレーション

高温高磁場下の超伝導状態 超伝導機構

高温超伝導体と金属超伝導体の超伝導マトリックス

シミュレーション手法

時間依存のギンツブルク・ランダウ方程式 🗾 超伝導電子密度の ダイナミクス マックスウエル方程式 🗪 電磁場のダイナミクス $\nabla \times B = \frac{4\pi}{c} j \qquad \mathbf{j} - \sigma \left[-\nabla \varphi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right] + \operatorname{Re} \left[\Delta^* \left[\frac{\nabla}{i} - \frac{2e}{\hbar c} \mathbf{A} \right] \Delta \right] \frac{\hbar c^2}{8\pi e \lambda^2}.$ テーマi) 温度と熱のダイナミクス エネルギー保存則 $C_v \frac{dT}{dt} + \frac{dF}{dt} + div(j_n^Q + J_s^Q) + W = 0$

期待される性能

高い演算密度による高いベクトル性能 空間分解による高い並列性能

i) 中性子検出デバイス開発を先導するシミュレーション

シミュレーション結果の現状

超伝導秩序パラメータのダイナミクス

シミュレーション 結果(初期)

ii) 超伝導ナノファブリケーションによる新奇物性

2、HPFを用いた並列化とチューニング

プログラムの構成と特徴

例:時間依存のギンツブルク・ランダウ方程式

```
*(BDELTR(I, J, K))
   &
   &
           + (BDELTR (I, J, K) **2+BDELTI (I, J, K) **2) *BDELTR (I, J, K)
   &
           -(FDERXR(I, J)+BDERXR(I, J))*DX2
   &
           -(FDERYR(I, J) + BDERYR(I, J)) * DY2
           -(FDERZR(I, J)+BDERZR(I, J))*DZ2
   &
           )
   &
          FDELTI(I, J, K) = BDELTI(I, J, K) - DT12*(
   &
            -TTCC(I, J)
   &
           *(BDELTI(I, J, K))
   &
           + (BDELTR (I, J, K) **2+BDELTI (I, J, K) **2) *BDELTI (I, J, K)
           -(FDERXI(I, J)+BDERXI(I, J))*DX2
   &
   &
           -(FDERYI(I, J)+BDERYI(I, J))*DY2
           -(FDERZI(I, J)+BDERZI(I, J))*DZ2
   &
   &
111
     CONTINUE
112
     CONTINUE
```


HPF指示行の挿入

プロトタイプコード ソース行数:961行 HPF指示文:92行

HPF利用に際しての工夫

1)空間変数(配列)の全てをインクルードファイルで 記述。

超伝導電子密度(複素量:2成分) ベクトルポテンシャル(3成分) 局所磁場値(3成分)

インクルードファイル(場の変数定義)

!- All Process number is 1024 = 32 * 32 INTEGER, DIMENSION(32) :: N_PE_J INTEGER, DIMENSION(32) :: N_PE_K DATA (N_PE_J(I), I=1, 32) /25*69, 7*68/ !-distoribute 2200+1 elems DATA (N_PE_K(I), I=1, 32) /25*35, 7*34/ !-distoribute 1400 +1 elems !-kano-

COMMON/DELTA1/BDELTR (L, M, N), BDELT I (L, M, N) COMMON/UXVPX/FUXVPR (L, M, N), FUXVP I (L, M, N) COMMON/FLUXX/BX (0:L, 0:M, 0:N)

 IHPF\$
 PROCESSORS
 PE (32, 32)
 I=1024PEs
 2次元分割

 IHPF\$
 TEMPLATE
 TEMP (0: L, 0: M, 0: N)
 IHPF\$
 DISTRIBUTE
 TEMP (*, GEN_BLOCK (N_PE_J), GEN_BLOCK (N_PE_K))
 ONTO PE

* 各変数配列に 2次元分割指定

!HPF\$ ALIGN (I, J, K) WITH TEMP(I, J, K):: BDELTR, BDELTI!HPF\$ SHADOW(0, 1:1, 1:1):: BDELTR, BDELTI

超伝導電子密度

 !HPF\$ ALIGN (I, J, K) WITH TEMP(I, J, K)
 :: BX

 !HPF\$ SHADOW(0, 1:0, 1:0)
 :: BX

ベクトルポテンシャル

磁場

*明示的にシャドウを指定 (通信量削減を意識)

2)物理量測定(総和等の計算)をMAINルーチンに 集中記述

MAINルーチン(物理量測定) 磁場(BX、BZ)の総和計算

TOTBX=0.0 TOTBZ=0.0 !HPF\$ INDEPENDENT, REDUCTION(TOTBX, TOTBZ) D0 334 K=1, N D0 335 J=1, M D0 336 l=1, L TOTBX=TOTBX+BX(I, J, K)/(DY*DZ) TOTBZ=TOTBZ+BZ(I, J, K)/(DX*DY) 336 CONTINUE 335 CONTINUE 334 CONTINUE WRITE(6, '(15, 4E15.7)') IT, TOTBX, TOTBZ, AEMHX, AEMHZ

3)方程式ソルバーでは、通信の要不要を明示的に 指定

C=====	=====		X COM	PONENT ====	============	======	======	==
!HPFJ	REFLE	CT FUXVPR	, FUXVP	I, FUYVPR, FU	YVPI, FUZVPR	, FUZVPI	:	*各変数のシャドウ
!HPF\$	INDEP	ENDENT, N	EW(TT1	, TT2, TT3, TT4	4)		_	のアップデート
	DO 1	3 K=1,N−1						
	DO 1	2 J=1,M−1						
	DO 1	1 I=1, L						
!HPF\$	ON H	OME(BX(I,	J,K)),	LOCAL (FUYV	PR, FUYVPI, F	UZVPR, F	UZVPI)	BEGIN
		TT1	= F	UYVPR(I, J, K))*FUYVPR(I	,J,K	+1)	
&			+ F	UYVPI(I, J, K))*FUYVPI(I	,J,K	+1)	* LOCALIE FU
		TT2	= F	UYVPR(I, J, K))*FUYVPI(I	,J,K	+1)	* LUCALICみり 落に N 西本レナの -
&			– F	UYVPI(I, J, K))*FUYVPR(I	,J,K	+1)	通信必要なしを明示
		TT3	= F	UZVPR(I, J, K))*FUZVPR(I	, J+1, K)	
&			+ F	UZVPI(I, J, K))*FUZVPI(I	, J+1, K)	
		TT4	= F	UZVPR(I, J, K))*FUZVPI(I	, J+1, K)	
&			– F	UZVPI(I, J, K))*FUZVPR(I	, J+1, K)	
		BX(I, J, K) = TT	1*TT4 - TT2:	*TT3			
!HPF\$	END 0	Ν			一	次元	の計	質では 明示的
11	CONT	INUE			IP,		╺╱╽╵┊	
12	CONT	INUE				· · · · · · · · · · · · · · · · · · ·	正か	不 肖的
13	CONT	INUE				攵 小 –	-1	もいです
					1	ロベノ	シーグ	し旅り必と

HPF/JA1.0拡張仕様:LOCAL、REFLECTを 用い通信位置を指示。

3、性能評価(MPIとの比較)

単位Gflops

	1024PE (128node)	512PE(64node)			
HPF	4391 53% 96%(MPI比)	2358 58% _{97%} (MPI比)			
MPI	4560 55%	2413 59%			
ピーク	8192	4046			

HPFの印象

*優れた性能を短期間で達成可 *通信の制御を明示(MPIに匹敵する高性能) *高次元の配列処理に注意(拡張機能が対応?)

4、まとめと結論

- 1)現在まで、MPI版とHPF版のプロトタイプコードを開発した。 HPF版の開発は数日オーダである。
- 2) 通信の制御等によりMPI版に匹敵する高性能を大ノード で実現。
- 3) プロトタイプコードの経験を下にHPF化を先に進める ことを検討。

短期間のプロジェクト(開発、チューニング、シミュレーション) では、HPFは貴重な役割を果たす!