HPFワークショップ 平成15年9月25日 地球シミュレータセンター

SX-7の特長を生かした粒子シミュレーションHPFコード

核融合科学研究所理論・シミュレーション研究センター 石黒静児

協力いただいた方: 核融合科学研究所 渡邊國彦、大谷寛明、堀内利得、岡本正雄 NEC 林康晴、末広謙二、堀内紳年 中部大 高丸尚教

核融合科学研究所理論・シミュレーション研究センター大型シミュレーション研究用解析装置の概要

• NEC製 SX-7 を中核としたシステム

主システム概要

機種名	SX7/160M5
アーキテクチュア	共有メモリ型ベクトル並列
総主記憶容量	1280GBytes
総合処理速度	1440GFlops
ノード数	5
1ノードあたりのPE数	32
1PEあたりのベクトルパイプ ライン数	4
ノード間転送速度(単方向)	8GBytes/sec
大容量データストレージ	100TBytes

性能(測定值)

Linpack測定結果
 200,000元の実行で1.378TFLOPS
 (peak性能の97.54%)
 top500リストの38位相当

大型シミュレーション研究用解析装置ネットワーク

核融合研のシステムの特長

- 1ノードあたり主記憶容量が大きい(256GBytes)
- 共有メモリ型ベクトル並列
- 少数のノードで構成(5ノード構成)

プラズマ粒子シミュレーション(静電コード) Particle-in-Cell(PIC)法

Sxf90 (1node)での実行時間(elapse time)比率

4PEのケース	
Charge	48%
Accel	45%
Move	4%
Field	2%
32PEのケース	•
32PEのケース Charge	75%
32PEのケース Charge Accel	75% 16%
32PEO/	75% 16% 2%

HPF化の方針

- 共有並列とHPFによる分散並列を共用する
- 領域の分割は行わない
- 場の量は各HPFプロセスで重複計算を行う

配列(3次元周期境界静電コード)

- 粒子関係(座標、速度) --分散
 x(:), y(:), z(:), vx(:), vy(:), vz(:)
- 場の量--分散させない(各HPFプロセスで同じものを持つ)
 rho(:,:,:), phi(:,:,:), ex(:,:,:), ey(:,:,:), ez(:,:,:)
- 作業用配列(charge でベクトル、並列実行のため)--分散
 work(:,:,:,;,;)

HPF分散

x,y,z,vx,vy,vz - 通常は1次元配列

電子 負イオン 正イオン

- 要請:x,y,z,vx,vy,vzに各々1つの配列
- 分散方法(1次元配列):
- 1. サイクリック分散

現状のsxhpfでは共有並列、ベクトルとの併用がうまくいかない

2. ブロック分散

ロードバランスが悪くなる、アルゴリズムの変更大

HPF分散(続き)

x,y,z,vx,vy,vz を2次元配列にし、2次元めでブロック分散
 1次元目

二次 元 目 pe, hpf

プログラム

module

charge

!hpf\$ independent,new(ipe,j,kk,il,iu,n1,nl,lr1,ist, !hpf\$& jx,jy,jz,ddx,ddy,ddz,nadd) do ipe=1,npe il = itopp(ipe) iu = iendp(ipe) -----省略-----!cdir novector do j=1,nl -----省略-----!cdir nodep do kk= 1, lr1ii = ist + kkjx =x(ii,ipe) ddx=x(ii,ipe)-jx ----省略 ---workp(jx,jy,jz,kk,ipe) = workp(jx,jy,jz,kk,ipe) & +(1.0d0-ddx)*(1.0d0-ddy)*(1.0d0-ddz)& enddo enddo enddo end

!hpf\$ independent, new(ipe,l,k,j,i),reduction(rho) do ipe = 1,npe do l=1,lr,4 do k=0,ngz do j=0,ngy !cdir nodep do i=0,ngx rho(i,j,k) = rho(i,j,k)+ qdxdydz*(workp(i,j,k,l,ipe) & & + workp(i,j,k,l+1,ipe)& + workp(i,j,k,l+2,ipe) & + workp(i,j,k,l+3,ipe)) enddo enddo enddo enddo enddo

accel

```
!hpf$ independent,new(ipe,i,jx,jy,jz,vxo,vyo,vzo,ddx,ddy,ddz
!hpf$&
                ,aax,aay,vzn,vyy,vxx)
   do ipe=1,npe
     do i=itopp(ipe),iendp(ipe)
      jx = x(i,ipe)
      vxo = vx(i,ipe)
       ddx = x(i,ipe)-jx
       aax =
         ex(jx,jy,jz) *(1.0d0-ddx)*(1.0d0-ddy)*(1.0d0-ddz)+
  &
         ex(jx,jy+1,jz) *(1.0d0-ddx)*ddy*(1.0d0-ddz)+
  &
         ex(jx+1,jy,jz) *ddx*(1.0d0-ddy)*(1.0d0-ddz)+
  &
   ----省略-----
       aay =
         ey(jx,jy,jz) *(1.0d0-ddx)*(1.0d0-ddy)*(1.0d0-ddz)+
  &
      vyy = vy(i,ipe) + aay
       vxx = vx(i,ipe) - t*vyy + aax
      vyy = vyy + s*vxx
      vxx = vxx - t^*vyy
      vx(i,ipe) = vxx + aax
      vy(i,ipe) = vyy + aay
       vz(i,ipe) = vzn
     enddo
    enddo
```

性能比較(1ノード及び2ノードジョブ) 128x128x128grids, 64particles/cell for each species, total number of particles 268,435,456, 500 time steps

Pe数	Node数	Hpfプロ	コンパイラ	経過時間	sec/step	nsec/step
		セス数		(sec)		/particle
32	1		sxf90	635	1.27	4.73
32	1	1	sxhpf	646	1.29	4.81
32	1	2	sxhpf	625	1.25	4.66
32	2	2	sxhpf	567	1.13	4.22
32	1	4	sxhpf	612	1.22	4.56
32	2	4	sxhpf	561	1.12	4.18
32	1	8	sxhpf	1016	2.03	7.57
64	2	2	sxhpf	472	0.94	3.52
64	2	4	sxhpf	440	0.88	3.28
64	2	8	sxhpf	432	0.86	3.22
64	2	16	sxhpf	626	1.25	4.66

まとめ

- 1ノードあたりの主記憶容量が大きいというSX-7の特長
 を生かした粒子コードのHPF化を行った。
- 粒子座標等の配列を2次元化し、2次元目をブロック分 散することにより効率的に、ベクトル、共有並列、分散並 列を併用することが可能なコーディングができた。
- 同じpe数の場合、HPF分散でノード越えを行うことによる 性能低下は見られなかった。