
April 24, 2003 Workshop for HPF 1

Practice of ＨＰＦ
programming

― Examples in the Earth Simulator

Earth Simulator Center
Hitoshi Murai

April 24, 2003 Workshop for HPF 2

Table of Contents

• Steps of ＨＰＦ Programming
• Example(1) IMPACT-3D
• Example(2) PFES
• Topic: 3-Level Parallelism
• Topic: Procedure Call in a Parallel Loop
• Tips

April 24, 2003 Workshop for HPF 3

Steps of ＨＰＦ Programming
(1) Determine which dim. of arrays to be

distributed.
• the last dim. of the principal array x(nx,ny,nz)
• the dim. of the same size work(nz)
• the dim. referenced in a parallel loop

!HPF$ distribute (*,*,block) :: x
!HPF$ distribute (block) :: work

!HPF$ distribute (*,*,block) :: x
!HPF$ distribute (block) :: work

(3) Compile and view the messages.

(2) Insert DISTRIBUTE directives in each
procedure.

% hpf -Minfo foo.hpf% hpf -Minfo foo.hpf

April 24, 2003 Workshop for HPF 4

Steps of ＨＰＦ Programming (contd.)

(4) Add an INDEPENDENT (+ REDUCTION)
directive for each loop that is not shown as
“Independent loop parallelized,” if
necessary.

(5) Go through trial and error to achieve
acceptable high performance.

!HPF$ independent, reduction(sum)
do i=1, n
a(i) = ...
sum = sum + a(i)

end do

!HPF$ independent, reduction(sum)
do i=1, n
a(i) = ...
sum = sum + a(i)

end do

5, SUM reduction generated
1 FORALL generated
sum reduction inlined

5, SUM reduction generated
1 FORALL generated
sum reduction inlined

6, Reduction call .reduce_sum emitted for variable sum
Independent loop parallelized

6, Reduction call .reduce_sum emitted for variable sum
Independent loop parallelized

April 24, 2003 Workshop for HPF 5

IMPACT-3D (1) Overview
• IMPlosion Analysis Code with TVD scheme (three-

dimensional compressible and inviscid Eulerian fluid
computation)

[1] H. Sakagami, H. Murai, Y. Seo and M. Yokokawa.
14.9 TFLOPS Three-dimensional Fluid Simulation for
Fusion Science with HPF on the Earth Simulator, In
proc. of SC2002, Nov. 2002.

Example of the results of IMPACT-3D

• Awarded the Gordon Bell Award
for Language in Supercomputing
2002 [1]

※ The source code is
available in the ESC
Web page for
downloading.

– spatial differentiation: explicit 5-
point stencil scheme

– time integration: fractional time step

April 24, 2003 Workshop for HPF 6

IMPACT-3D (2) Array Mapping

• The last dim. (i.e. 3rd dim.) of each array
is distributed by BLOCK.

• Shadow areas are added to the distributed
3rd dimension (optional).

!HPF$ distribute (*,*,block) ::
!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& walfa1,walfa2,walfa3,walfa4,walfa5,
!HPF$& wnue1,wnue2,wnue3,wnue4,wnue5,
...

!HPF$ shadow (0,0,0:1) ::
!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& wg1,wg2,wg3,wg4,wg5,
!HPF$& wtmp1,wtmp2,wtmp3

!HPF$ distribute (*,*,block) ::
!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& walfa1,walfa2,walfa3,walfa4,walfa5,
!HPF$& wnue1,wnue2,wnue3,wnue4,wnue5,
...

!HPF$ shadow (0,0,0:1) ::
!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& wg1,wg2,wg3,wg4,wg5,
!HPF$& wtmp1,wtmp2,wtmp3

April 24, 2003 Workshop for HPF 7

IMPACT-3D (3) Loop Parallelization

• All of the loops except one are parallelized
automatically.

• An INDEPENDENT directive with the REDUCTION
clause is required for parallelizing the MAX
reduction as follows:

!HPF$ independent, reduction(sram)
do 10 iz = 1, lz
do 10 iy = 1, ly
do 10 ix = 1, lx

wuu = sm(ix,iy,iz) / sr(ix,iy,iz)
wvv = sn(ix,iy,iz) / sr(ix,iy,iz)
www = sl(ix,iy,iz) / sr(ix,iy,iz)
wcc = sqrt(sgam * sp(ix,iy,iz) / sr(ix,iy,iz))
sram = max(sram, abs(wuu)+wcc, abs(wvv)+wcc, abs(www)+wcc)

10 continue

!HPF$ independent, reduction(sram)
do 10 iz = 1, lz
do 10 iy = 1, ly
do 10 ix = 1, lx

wuu = sm(ix,iy,iz) / sr(ix,iy,iz)
wvv = sn(ix,iy,iz) / sr(ix,iy,iz)
www = sl(ix,iy,iz) / sr(ix,iy,iz)
wcc = sqrt(sgam * sp(ix,iy,iz) / sr(ix,iy,iz))
sram = max(sram, abs(wuu)+wcc, abs(wvv)+wcc, abs(www)+wcc)

10 continue

automatically parallelized
by the latest version.

April 24, 2003 Workshop for HPF 8

IMPACT-3D (4)
Vectorization and Intra-Node Parallelization

• Intra-Node Parallelization
An HPF processor is assigned to a CPU (i.e.
flat parallelization, to be shown later).

• Vectorization
All of the loops are vectorized automatically.

No vectorization directive is required.

No microtasking directive is required.

April 24, 2003 Workshop for HPF 9

IMPACT-3D (5) Evaluation (ver.1)

Parallelization is completed with
only DISTRIBUTE directives and
one INDEPENDENT.

That’s all !

For 2048x2048x4096 mesh,
12.5Tflops (38％ of the peak)
is achieved on 4096 CPUs (8CPUs x 512PNs).

38 lines of 12 HPF directives in 1119 lines
1137

April 24, 2003 Workshop for HPF 10

IMPACT-3D (5) Improvements

!HPFJ reflect sr, sm, sp, se, sn, sl

do iz = 1, lz-1
!HPF$ on home(sm(:,:,iz)), local begin

do iy = 1, ly
do ix = 1, lx

wu0 = sm(ix,iy,iz) / sr(ix,iy,iz)
wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wv0 = sn(ix,iy,iz) / sr(ix,iy,iz)
...

!HPFJ reflect sr, sm, sp, se, sn, sl

do iz = 1, lz-1
!HPF$ on home(sm(:,:,iz)), local begin

do iy = 1, ly
do ix = 1, lx

wu0 = sm(ix,iy,iz) / sr(ix,iy,iz)
wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wv0 = sn(ix,iy,iz) / sr(ix,iy,iz)
...

Communication cost reduced.

Control communications with REFLECT
and LOCAL directives of HPF/JA
extensions

It is possible to reduce the
number of message passing
or schedule generation by
specifying SHIFT
communications explicitly.

April 24, 2003 Workshop for HPF 11

IMPACT-3D (6) Evaluation (ver.2)

For 2048x2048x4096 mesh,
14.9Tflops (45％ of the peak)
is achieved in 4096CPUs (8CPUs x 512PNs).

Communication control with
REFLECT and LOCAL is added to
the ver.1.

50 lines of 20 HPF directives in 1131 lines

Note: The MPI version achieves 15.3Tflops.

1949

April 24, 2003 Workshop for HPF 12

IMPACT-3D (8) Summary

• Parallelization with only DISTRIBUTE and
one INDEPENDENT (ver.1) → 12.5 Tflops

• additional communication control with
REFLECT and LOCAL (ver.2) → 14.9Tflops

• An HPF processor is assigned to a CPU.
• Optimal vectorization is done without

directives.

April 24, 2003 Workshop for HPF 13

PFES (1) Overview

• Based on a numerical ocean model POM
(Princeton Ocean Model) and developed
for ES (POM for ES)

• A coupling code iterating computations for
atmosphere and ocean by turns

April 24, 2003 Workshop for HPF 14

PFES (2) Array Mapping
• The dim. for the latitude is distributed by BLOCK.
• The shadow areas are added to the distributed

dim.

!hpf$ distribute(*,block,*) onto npr :: u
!hpf$ shadow u(0,1:1,0)

!hpf$ distribute(*,block,*) onto npr :: u
!hpf$ shadow u(0,1:1,0)

u(i,j,k)

longitude (to be
vectorized)

latitude (to be
parallelized)

vertical

Distributing the last dim. is
better in performance.

April 24, 2003 Workshop for HPF 15

PFES (3) Loop Parallelization
and Communication

• INDEPENDENT(+REDUCTION) and
ON+LOCAL are specified for parallel loops.

• REFLECT directives are inserted for
neighborhood accesses.

!HPFJ reflect d
...

!HPF$ independent
do j = j2, jmx

!HPF$ on home(utf(:,j)),local begin
do i = 2, im
utf(i,j) = ua(i,j)*(d(i,j)+d(i-1,j))*isp2i
vtf(i,j) = va(i,j)*(d(i,j)+d(i,j-1))*isp2i

enddo
!HPF$ end on

enddo

!HPFJ reflect d
...

!HPF$ independent
do j = j2, jmx

!HPF$ on home(utf(:,j)),local begin
do i = 2, im
utf(i,j) = ua(i,j)*(d(i,j)+d(i-1,j))*isp2i
vtf(i,j) = va(i,j)*(d(i,j)+d(i,j-1))*isp2i

enddo
!HPF$ end on

enddo

Most of the directives is
not required for
parallelization because
HPF/ES can
automatically parallelize
the loops and generate
the communications.

April 24, 2003 Workshop for HPF 16

PFES (3) Vectorization and Intra-Node
Parallelization

• Intra-node Parallelization
– The hybrid parallelization (discussed later) is applied.

an HPF processor for a node and a microtask for a CPU
– All of the loops are parallelized automatically.

• Vectorization
All of the loops are vectorized automatically.

No vectorization directive is required.

No microtasking directive is required.

April 24, 2003 Workshop for HPF 17

PFES (4) Evaluation
For the resolution of 0.02 degree for the
longitude and 0.025 for the latitude
(18004x6002x52 mesh),
10.5Tflops (43.5％ of the peak)
is achieved on 3008CPU (8CPUs x 376PNs).

The performance is improved to 11.11Tflops if the
dims. of each array is interchanged so that the
last dim. is distributed.

April 24, 2003 Workshop for HPF 18

PFES (5) Summary

• Parallelization is done with DISTRIBUTE,
INDEPENDENT(+REDUCTION), REFLECT,
ON+LOCAL→ 10.5 Tflops

• An HPF processor is assigned to a node
and a microtask to a CPU.

• Optimal vectorization is done without
directives.

April 24, 2003 Workshop for HPF 19

3-Level Parallelism (1)
• Flat Parallelization

An HPF processor is
assigned to a CPU in
each node.

• Hybrid
Parallelization
An HPF processor is
assigned to a node
and intra-node
parallelization is
applied.

Flat Parallelization (pure HPF)

Hybrid Parallelization (HPF+Microtasking)

HPF processor

HPF processor

microtask

IMPACT-3D

PFES

April 24, 2003 Workshop for HPF 20

3-Level Parallelism (2)

Programming easy

Flat

• Advantages and Disadvantages of the two
Methods

difficult

highlow

Hybrid

Peformance

The difference of performance is not so large and the reverse
results are possible because of the characteristics of programs.
The hybrid method is superior in memory size or the
performance of collective communications.

April 24, 2003 Workshop for HPF 21

Procedure Call in a Parallel Loop

real a(M,N)
!HPF$ distribute (*,block) :: a

interface
pure subroutine sub(w)
real w(:)
end subroutine

end interface

!HPF$ independent
do j=1, N
do i=1, M

w(i) = a(i,j)
end do
call sub(w)
do i=1, M

a(i,j) = w(i)
end do

end do

real a(M,N)
!HPF$ distribute (*,block) :: a

interface
pure subroutine sub(w)
real w(:)
end subroutine

end interface

!HPF$ independent
do j=1, N
do i=1, M

w(i) = a(i,j)
end do
call sub(w)
do i=1, M

a(i,j) = w(i)
end do

end do

It is possible if:
– the callee procedure

is PURE;
– the loop is

INDEPENDENT;
and

– all of the arguments
are non-mapped.

April 24, 2003 Workshop for HPF 22

Tips (1) Mapping
• Distribute the last dimension, if possible.

real a(n), b(n+1)
!HPF$ distribute (block) :: a, b

real a(n), b(n+1)
!HPF$ distribute (block) :: a, b

real a(n+1), b(n+1)
!HPF$ distribute (block) :: a, b

real a(n+1), b(n+1)
!HPF$ distribute (block) :: a, b

real a(n,n)
!HPF$ distribute (block,*) :: a

real a(n,n)
!HPF$ distribute (block,*) :: a

real a(n,n)
!HPF$ distribute (*,block) :: a

real a(n,n)
!HPF$ distribute (*,block) :: a

real a(1025)
!HPF$ processors p(256)
!HPF$ distribute (block) onto p :: a

real a(1025)
!HPF$ processors p(256)
!HPF$ distribute (block) onto p :: a

real a(1024)
!HPF$ processors p(256)
!HPF$ distribute (block) onto p :: a

real a(1024)
!HPF$ processors p(256)
!HPF$ distribute (block) onto p :: a

• Use a number for the size of the distributed dim.
of each array.

• Declare the size of the distributed dim. to be
multiple of #of processors.

4 elements x 256CPU 5 elements x 205CPU and 0 x 51CPU

April 24, 2003 Workshop for HPF 23

Tips (2) Tools
• HPFPROF provides variable usable information.

Execution
Time

Comm.
Time

Number of
Visits

Target
Loop

• MPI_PROGINF, ftrace and prof are also usable.

April 24, 2003 Workshop for HPF 24

Tips (3) Communication Control
• Specify

communications with:
– REFLECT;
– array assignment; or
– MPI interface.

• Assert with LOCAL
that no communication
is required.

!HPF$ distribute (*,block) :: a, b1, c1
!HPF$ distribute (block,*) :: b2, c2

!HPFJ reflect a
b2 = b1
call my_transpose(c1, c2)
...

!HPF$ independent
do j=1, 100

!HPF$ on home(a(i)), local begin
...

!HPF$ end on
end do

!HPF$ distribute (*,block) :: a, b1, c1
!HPF$ distribute (block,*) :: b2, c2

!HPFJ reflect a
b2 = b1
call my_transpose(c1, c2)
...

!HPF$ independent
do j=1, 100

!HPF$ on home(a(i)), local begin
...

!HPF$ end on
end do

April 24, 2003 Workshop for HPF 25

Tips (4) Communication Optimization

• Packed Communication (message aggregation)
can aggregate communications of the same
pattern for different arrays into one to improve
performance.

real a1(100,100), a2(100,100)
& b1(100,100), b2(100,100)

!HPF$ distribute (*,block) :: a1, b1
a2 = a1 ! Communication
b2 = b1 ! Communication

real a1(100,100), a2(100,100)
& b1(100,100), b2(100,100)

!HPF$ distribute (*,block) :: a1, b1
a2 = a1 ! Communication
b2 = b1 ! Communication

real a1(100,100), a2(100,100)
& b1(100,100), b2(100,100)

!HPF$ distribute (*,block) :: a1, b1
real buf1(2,100,100), buf2(2,100,100)

!HPF$ distribute (*,*,block) :: buf1
buf1(1,:,:) = a1 ! Packing
buf1(2,:,:) = b1 ! Packing
buf2 = buf1 ! Communication
a2 = buf2(1,:,:) ! Unpacking
b2 = buf2(2,:,:) ! Unpacking

real a1(100,100), a2(100,100)
& b1(100,100), b2(100,100)

!HPF$ distribute (*,block) :: a1, b1
real buf1(2,100,100), buf2(2,100,100)

!HPF$ distribute (*,*,block) :: buf1
buf1(1,:,:) = a1 ! Packing
buf1(2,:,:) = b1 ! Packing
buf2 = buf1 ! Communication
a2 = buf2(1,:,:) ! Unpacking
b2 = buf2(2,:,:) ! Unpacking

packs the arrays
into a buffer.

Effective for expensive
communications (i.e. those other
than SHIFT)

April 24, 2003 Workshop for HPF 26

Tips (5) Optimization with MPI

• MPI interface
Code region of performance bottleneck can be
replaced with more efficient MPI procedures.

real a(100,100), b(100,100)
!HPF$ distribute (*,block) :: a
!HPF$ distribute (block,*) :: b

b = a ! transposition

real a(100,100), b(100,100)
!HPF$ distribute (*,block) :: a
!HPF$ distribute (block,*) :: b

b = a ! transposition

real a(100,100), b(100,100)
!HPF$ distribute (*,block) :: a
!HPF$ distribute (block,*) :: b

call my_transpose(a, b)
...
end

extrinsic(HPF_LOCAL)
& subroutine my_transpose(a, b)
...
call MPI_send(...)
...
end

real a(100,100), b(100,100)
!HPF$ distribute (*,block) :: a
!HPF$ distribute (block,*) :: b

call my_transpose(a, b)
...
end

extrinsic(HPF_LOCAL)
& subroutine my_transpose(a, b)
...
call MPI_send(...)
...
end

April 24, 2003 Workshop for HPF 27

Tips (6) I/O
• I/O of mapped arrays should be done through

the parallel I/O features.
∵ Normal I/O degrades performance terribly.

• Parallel files are united by the re-partioner tool
and post-processed after execution.

real a(100)
!HPF$ distribute (block) :: a

...
open(11,file=‘foo’)
...
write(11) a ! parallel I/O

real a(100)
!HPF$ distribute (block) :: a

...
open(11,file=‘foo’)
...
write(11) a ! parallel I/O

specify that the unit 11 is for parallel I/O

unite and post-process the parallel files

% setenv HPF_FFUNIT 11% setenv HPF_FFUNIT 11

% lpionumchg -inum=N ionum=1 -f=8 foo foo2
% “post-process foo2”

% lpionumchg -inum=N ionum=1 -f=8 foo foo2
% “post-process foo2”

April 24, 2003 Workshop for HPF 28

Tips (7) Computaion mapping for
boundaries

• Specifying explicitly with ON+LOCAL which
processor to execute the computations for
boundaries, improves the performance.

real a(100,100)
!HPF$ distribute (*,block) :: a

...
!HPF$ on home(a(:,1)), local begin

do i=1, 100
a(i,1) = ...

end do
!HPF$ end on

...
!HPF$ on home(a(:,100)), local begin

do i=1, 100
a(i,100) = ...

end do
!HPF$ end on

real a(100,100)
!HPF$ distribute (*,block) :: a

...
!HPF$ on home(a(:,1)), local begin

do i=1, 100
a(i,1) = ...

end do
!HPF$ end on

...
!HPF$ on home(a(:,100)), local begin

do i=1, 100
a(i,100) = ...

end do
!HPF$ end on

April 24, 2003 Workshop for HPF 29

Tips (8) Specifying NEW variables

• In most cases it is efficient to specify all of NEW
variables with compiler options:

-Mscalarnew; and
-Mnomapnew,

which reduce the task of respective specifications.
Note: the options cannot be used and respective specifications are

required if the last value is referenced after the loop.

!HPF$ distribute (block) :: a
do i=1, 100
t = a(i)

end do
write(*) t ! the value defined at

! i=100 is referenced.

!HPF$ distribute (block) :: a
do i=1, 100
t = a(i)

end do
write(*) t ! the value defined at

! i=100 is referenced.

The option -Mscalarnew
cannot be used in this
case.

April 24, 2003 Workshop for HPF 30

Tips (9) Vectorization and Intra-
Node Parallelization

• Insert directives for more effective
vectorization and intra-node parallelization.
Check the compiler messages.

!HPF$ independent
do k=1, nz
do j=1, ny

do i=1, nx
a(i,j,k) = ...

end do
end do

end do

!HPF$ independent
do k=1, nz
do j=1, ny

do i=1, nx
a(i,j,k) = ...

end do
end do

end do

!HPF$ independent
!CDIR noconcur

do k=1, nz
!CDIR concur

do j=1, ny
do i=1, nx

a(i,j,k) = ...
end do

end do
end do

!HPF$ independent
!CDIR noconcur

do k=1, nz
!CDIR concur

do j=1, ny
do i=1, nx

a(i,j,k) = ...
end do

end do
end doThe k loop parallelized by HPF is

also parallelized in microtasking.

April 24, 2003 Workshop for HPF 31

Tips (10) Calling Fortran
Procedures

• In general Fortran procedures should be called as
FORTRAN_LOCAL from HPF_LOCAL procedures.

• When Fortran procedures are called directly, note the
following points:
– pass the local size

through an argument.
– distribute array

arguments in the last
dim.

– specify no shadow
except in the last dim.
of array arguments.

real r(m,n), wk(m,n)
!HPF$ distribute (block,*) :: r, wk
!HPF$ shadow (0,0) :: r, wk

interface
extrinsic(FORTRAN_LOCAL)

+ subroutine DFRMBF(...)
real r(:,:)

!HPF$ distribute (block,*) :: r
...
end subroutine

end interface
...
np = number_of_processors()
call DFRMBF(n,m/np,r,m/np,1,
+ isw,ifax,trigs,wk,ierr)

real r(m,n), wk(m,n)
!HPF$ distribute (block,*) :: r, wk
!HPF$ shadow (0,0) :: r, wk

interface
extrinsic(FORTRAN_LOCAL)

+ subroutine DFRMBF(...)
real r(:,:)

!HPF$ distribute (block,*) :: r
...
end subroutine

end interface
...
np = number_of_processors()
call DFRMBF(n,m/np,r,m/np,1,
+ isw,ifax,trigs,wk,ierr)

April 24, 2003 Workshop for HPF 32

Tips (11) Fortran 90 Features
• Unrecommended Features

– EQUIVALENCE Statement
– Derived Type
– Pointer
– actual argument whose shape differs from that of the

dummy.
– Shared termination DO construct
– COMMON block whose size varies with procedures
– Assumed-size Array
– etc.

